Electrochemical properties of two-dimensional zirconium nitrogen anode materials for K-ion battery by first-principles insights

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
Jiangtao Yin, Lingxia Li, Wenbo Zhang, Di Liu, Junqiang Ren, Xin Guo, Xuefeng Lu
{"title":"Electrochemical properties of two-dimensional zirconium nitrogen anode materials for K-ion battery by first-principles insights","authors":"Jiangtao Yin,&nbsp;Lingxia Li,&nbsp;Wenbo Zhang,&nbsp;Di Liu,&nbsp;Junqiang Ren,&nbsp;Xin Guo,&nbsp;Xuefeng Lu","doi":"10.1007/s10008-024-06108-w","DOIUrl":null,"url":null,"abstract":"<div><p>As a class of two-dimensional transition metal compounds, MXene has become the most potential alternative electrode materials because of its fascinating properties. In this contribution, the electrochemical properties of Zr<sub>2</sub>N with O and S groups for K-ion battery are explored. The O and S functional groups have high electronegativity and high affinity with K-ion; the results show that the most stable adsorption site of Zr<sub>2</sub>NO<sub>2</sub> and Zr<sub>2</sub>NS<sub>2</sub> models is on the bottom Zr atom; with regard to the Zr<sub>2</sub>N model, it is located at above the N atom; and the corresponding adsorption energy on the surface of Zr<sub>2</sub>NO<sub>2</sub> and Zr<sub>2</sub>NS<sub>2</sub> models is far less than that Zr<sub>2</sub>N model. The differential charge density map and atomic population indicated obvious electron transfer between the adsorbed atom and monolayer, which proved that there is some chemisorption. With regard to the electrochemical performance, K-ion has low open-circuit voltage and high theoretical specific capacity on Zr<sub>2</sub>N, Zr<sub>2</sub>NO<sub>2</sub>, and Zr<sub>2</sub>NS<sub>2</sub> models, and the migration barrier is smaller than that of common two-dimensional materials. A series of results suggest that Zr<sub>2</sub>N, Zr<sub>2</sub>NO<sub>2</sub>, and Zr<sub>2</sub>NS<sub>2</sub> can be applied as potential anode materials for K-ion batteries.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"769 - 781"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06108-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

As a class of two-dimensional transition metal compounds, MXene has become the most potential alternative electrode materials because of its fascinating properties. In this contribution, the electrochemical properties of Zr2N with O and S groups for K-ion battery are explored. The O and S functional groups have high electronegativity and high affinity with K-ion; the results show that the most stable adsorption site of Zr2NO2 and Zr2NS2 models is on the bottom Zr atom; with regard to the Zr2N model, it is located at above the N atom; and the corresponding adsorption energy on the surface of Zr2NO2 and Zr2NS2 models is far less than that Zr2N model. The differential charge density map and atomic population indicated obvious electron transfer between the adsorbed atom and monolayer, which proved that there is some chemisorption. With regard to the electrochemical performance, K-ion has low open-circuit voltage and high theoretical specific capacity on Zr2N, Zr2NO2, and Zr2NS2 models, and the migration barrier is smaller than that of common two-dimensional materials. A series of results suggest that Zr2N, Zr2NO2, and Zr2NS2 can be applied as potential anode materials for K-ion batteries.

Graphical abstract

基于第一性原理的k离子电池二维锆氮负极材料电化学性能研究
MXene作为一类二维过渡金属化合物,以其独特的性能成为最有潜力的替代电极材料。本文研究了含O和S基团的Zr2N在k离子电池中的电化学性能。O和S官能团具有高电负性和与k离子的高亲和力;结果表明:Zr2NO2和Zr2NS2模型最稳定的吸附位点在Zr原子底部;对于Zr2N模型,它位于N原子上方;Zr2NO2和Zr2NS2模型表面对应的吸附能远小于Zr2N模型。差分电荷密度图和原子居布表明,吸附原子和单层之间存在明显的电子转移,证明存在一定的化学吸附作用。电化学性能方面,k离子在Zr2N、Zr2NO2和Zr2NS2模型上具有较低的开路电压和较高的理论比容量,且迁移势垒小于普通二维材料。一系列研究结果表明,Zr2N、Zr2NO2和Zr2NS2可以作为k离子电池的潜在负极材料。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信