A Novel Passive Neck and Trunk Exoskeleton for Surgeons: Design and Validation

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Ce Zhang, Juha M. Hijmans, Christian Greve, Han Houdijk, Gijsbertus Jacob Verkerke, Charlotte Christina Roossien
{"title":"A Novel Passive Neck and Trunk Exoskeleton for Surgeons: Design and Validation","authors":"Ce Zhang,&nbsp;Juha M. Hijmans,&nbsp;Christian Greve,&nbsp;Han Houdijk,&nbsp;Gijsbertus Jacob Verkerke,&nbsp;Charlotte Christina Roossien","doi":"10.1007/s42235-024-00616-1","DOIUrl":null,"url":null,"abstract":"<div><p>Musculoskeletal Symptoms (MSS) often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures. To prevent MSS, a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed. The application of support force is intended to reduce muscle forces and joint compression forces. A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force. A validation test is subsequently conducted to assess the accuracy of the mathematical model. Finally, a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton. The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error (RMSE). The exoskeleton was shown to allow sufficient Range of Motion (ROM) for neck and trunk during open surgery training. While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks, the observed reduction in perceived task difficulty was deemed non-significant. This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 1","pages":"226 - 237"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00616-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Musculoskeletal Symptoms (MSS) often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures. To prevent MSS, a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed. The application of support force is intended to reduce muscle forces and joint compression forces. A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force. A validation test is subsequently conducted to assess the accuracy of the mathematical model. Finally, a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton. The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error (RMSE). The exoskeleton was shown to allow sufficient Range of Motion (ROM) for neck and trunk during open surgery training. While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks, the observed reduction in perceived task difficulty was deemed non-significant. This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信