Geyu Mo, Qingqing Wang, Xin Ren, Weitong Yan, Qinxun Li, Yen Chin Ong, Wentao Luo
{"title":"Testing Cotton gravity as dark matter substitute with weak lensing","authors":"Geyu Mo, Qingqing Wang, Xin Ren, Weitong Yan, Qinxun Li, Yen Chin Ong, Wentao Luo","doi":"10.1007/s11433-024-2582-7","DOIUrl":null,"url":null,"abstract":"<div><p>Harada proposed a modified theory of gravity called Cotton gravity, and argued that it successfully explains the rotation curves of 84 galaxies without the need for dark matter. In this work, we use the galaxy-galaxy lensing technique to test whether the modification effect of Cotton gravity can indeed be a viable substitute for dark matter. Using the spherically symmetric solution of Cotton gravity, we obtain the deflection angle via the Gauss-Bonnet theorem and the weak lensing shear. We use five galaxy catalogs divided into 5 stellar mass bins from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), each further divided into blue star-forming galaxy and red passive galaxy sub-catalogs. We find that Cotton gravity on its own has a significant deviation from the measured galaxy-galaxy lensing signals, thus it cannot replace the role of dark matter. If we consider the combination of dark matter and Cotton gravity, the modification is tightly constrained. Our analysis also applies to other modified gravity theories whose an additional linear term appears in the Schwarzschild solution.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2582-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Harada proposed a modified theory of gravity called Cotton gravity, and argued that it successfully explains the rotation curves of 84 galaxies without the need for dark matter. In this work, we use the galaxy-galaxy lensing technique to test whether the modification effect of Cotton gravity can indeed be a viable substitute for dark matter. Using the spherically symmetric solution of Cotton gravity, we obtain the deflection angle via the Gauss-Bonnet theorem and the weak lensing shear. We use five galaxy catalogs divided into 5 stellar mass bins from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), each further divided into blue star-forming galaxy and red passive galaxy sub-catalogs. We find that Cotton gravity on its own has a significant deviation from the measured galaxy-galaxy lensing signals, thus it cannot replace the role of dark matter. If we consider the combination of dark matter and Cotton gravity, the modification is tightly constrained. Our analysis also applies to other modified gravity theories whose an additional linear term appears in the Schwarzschild solution.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.