Thermophysical Properties of the Methyl tert-Butyl Ether + Benzene + n-Hexane Ternary System within the Temperature Range (293.15–313.15) K and Under Ambient Pressure: An Experimental and Modeling Approach
Altin Gjevori, Artan Llozana, Arbër Zeqiraj, Ariel Hernández, Naim Syla, Fisnik Aliaj
{"title":"Thermophysical Properties of the Methyl tert-Butyl Ether + Benzene + n-Hexane Ternary System within the Temperature Range (293.15–313.15) K and Under Ambient Pressure: An Experimental and Modeling Approach","authors":"Altin Gjevori, Artan Llozana, Arbër Zeqiraj, Ariel Hernández, Naim Syla, Fisnik Aliaj","doi":"10.1007/s10765-025-03502-y","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental densities and sound speeds at temperatures (293.15, 298.15, 303.15, and 313.15) K and under ambient pressure conditions are reported for the first time for the ternary system {MTBE + benzene + <i>n</i>-hexane} covering the entire composition range. The corresponding binary subsystems have also been studied. The excess molar volume and excess isentropic compressibility, derived from experimental density and sound speed data, were correlated using Redlich-Kister and Cibulka equations for binary and ternary systems, respectively. The composition and temperature dependence of these properties provided insights into the nature of molecular interactions and structural effects within the mixtures. The Perturbed Chain Statistical Associating Fluid Theory Equation of State was used to model the densities of both binary and ternary mixtures using a predictive approach. Schaaff’s Collision Factor Theory and Nomoto’s relation modeled the sound speeds. Further, this work utilized the Jouyban–Acree model to represent the composition and temperature dependence of experimental densities and sound speeds of the studied binary and ternary mixtures. Finally, the ternary excess properties are compared with the predicted values from binary contribution symmetric (Kohler and Muggianu) and asymmetric (Hillert and Toop) geometric models. The accuracy of the theoretical and empirical models was assessed by computing various statistical indicators.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03502-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental densities and sound speeds at temperatures (293.15, 298.15, 303.15, and 313.15) K and under ambient pressure conditions are reported for the first time for the ternary system {MTBE + benzene + n-hexane} covering the entire composition range. The corresponding binary subsystems have also been studied. The excess molar volume and excess isentropic compressibility, derived from experimental density and sound speed data, were correlated using Redlich-Kister and Cibulka equations for binary and ternary systems, respectively. The composition and temperature dependence of these properties provided insights into the nature of molecular interactions and structural effects within the mixtures. The Perturbed Chain Statistical Associating Fluid Theory Equation of State was used to model the densities of both binary and ternary mixtures using a predictive approach. Schaaff’s Collision Factor Theory and Nomoto’s relation modeled the sound speeds. Further, this work utilized the Jouyban–Acree model to represent the composition and temperature dependence of experimental densities and sound speeds of the studied binary and ternary mixtures. Finally, the ternary excess properties are compared with the predicted values from binary contribution symmetric (Kohler and Muggianu) and asymmetric (Hillert and Toop) geometric models. The accuracy of the theoretical and empirical models was assessed by computing various statistical indicators.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.