José Barreto, Carlos Luna, Nicole Soares, Matheus Souza, Ana Barros, Amanda Araújo, Elieber Bezerra, Edcleide Araújo, Renate Wellen
{"title":"Epoxidation of Residual Soybean Oil and Thermal Characterization of Residual Epoxidized Soybean Oil Crosslinked with Fumaric Acid","authors":"José Barreto, Carlos Luna, Nicole Soares, Matheus Souza, Ana Barros, Amanda Araújo, Elieber Bezerra, Edcleide Araújo, Renate Wellen","doi":"10.1007/s10924-024-03457-5","DOIUrl":null,"url":null,"abstract":"<div><p>The use of waste cooking oil (WVOs) for technological applications is a required alternative that contributes to the principles of the circular economy and demands of replacement of fossil sources. This work explores the epoxidation of residual soybean oil (RSO) from frying and investigates the crosslinking of residual epoxidized soybean oil (RESO) in contrast to the crosslinking of virgin epoxidized soybean oil (ESO), using fumaric acid (FMA). The curing and degradation kinetics of RESO/FMA and ESO/FMA compounds were investigated for molar ratios 1:0.45 and 1:0.70. RESO/FMA composites showed higher curing activation energies (E<sub>ac</sub>) during crosslinking, and higher degradation activation energies (E<sub>ad</sub>) given the greater thermal stability, been able to replace virgin ESO in epoxy resins.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 2","pages":"1197 - 1215"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03457-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of waste cooking oil (WVOs) for technological applications is a required alternative that contributes to the principles of the circular economy and demands of replacement of fossil sources. This work explores the epoxidation of residual soybean oil (RSO) from frying and investigates the crosslinking of residual epoxidized soybean oil (RESO) in contrast to the crosslinking of virgin epoxidized soybean oil (ESO), using fumaric acid (FMA). The curing and degradation kinetics of RESO/FMA and ESO/FMA compounds were investigated for molar ratios 1:0.45 and 1:0.70. RESO/FMA composites showed higher curing activation energies (Eac) during crosslinking, and higher degradation activation energies (Ead) given the greater thermal stability, been able to replace virgin ESO in epoxy resins.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.