Ceramic Composite Materials in the Ca2P2O7–Ca3(PO4)2 System Based on Powder Mixtures of Natural Calcium Phosphate and Monocalcium Phosphate Monohydrate
T. V. Safronova, X. Feng, V. I. Vorobyov, X. Liao, T. B. Shatalova, Ya. Yu. Filippov, A. M. Murashko, T. V. Filippova, Z. Xu, M. M. Akhmedov, N. R. Kildeeva
{"title":"Ceramic Composite Materials in the Ca2P2O7–Ca3(PO4)2 System Based on Powder Mixtures of Natural Calcium Phosphate and Monocalcium Phosphate Monohydrate","authors":"T. V. Safronova, X. Feng, V. I. Vorobyov, X. Liao, T. B. Shatalova, Ya. Yu. Filippov, A. M. Murashko, T. V. Filippova, Z. Xu, M. M. Akhmedov, N. R. Kildeeva","doi":"10.1007/s10717-025-00712-6","DOIUrl":null,"url":null,"abstract":"<p>Ceramics in the Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>–Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> system were obtained from powder mixtures containing calcium hydroxyapatite Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> and monocalcium phosphate monohydrate Ca(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>· H<sub>2</sub>O. Fish scale powder was used as a natural source of natural calcium hydroxyapatite Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>. The molar ratios of Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> /Ca(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>· H<sub>2</sub>O in the initial powder mixture equal to 1/4, 3/5 and 2/1, respectively, ensured the formation after firing of ceramics having a desirable phase composition, including calcium pyrophosphate Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub> and/or tricalcium phosphate Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> . The homogenization of the components was carried out by repeated passing of the powder mixture through a sieve with a mesh size of 200 μm. Plastic molding of the samples was carried out using ethyl alcohol as a binder. According to XRD data, the phase composition of all samples after the addition of alcohol, molding, and drying included monocalcium phosphate monohydrate Ca(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>· H<sub>2</sub>O and calcium hydroxyapatite Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>. Monetite CaHPO<sub>4</sub> and brushite CaHPO<sub>4</sub>· 2H<sub>2</sub>O were also present in the phase composition of the samples. The phase composition of prepared highly porous ceramic samples with relative density 27 – 55% after firing in a temperature range of 900 – 1100°C included β-tricalcium phosphate β–Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and/or β-calcium pyrophosphate β–Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"81 9-10","pages":"363 - 372"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass and Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10717-025-00712-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramics in the Ca2P2O7–Ca3(PO4)2 system were obtained from powder mixtures containing calcium hydroxyapatite Ca10(PO4)6(OH)2 and monocalcium phosphate monohydrate Ca(H2PO4)2· H2O. Fish scale powder was used as a natural source of natural calcium hydroxyapatite Ca10(PO4)6(OH)2. The molar ratios of Ca10(PO4)6(OH)2 /Ca(H2PO4)2· H2O in the initial powder mixture equal to 1/4, 3/5 and 2/1, respectively, ensured the formation after firing of ceramics having a desirable phase composition, including calcium pyrophosphate Ca2P2O7 and/or tricalcium phosphate Ca3(PO4)2 . The homogenization of the components was carried out by repeated passing of the powder mixture through a sieve with a mesh size of 200 μm. Plastic molding of the samples was carried out using ethyl alcohol as a binder. According to XRD data, the phase composition of all samples after the addition of alcohol, molding, and drying included monocalcium phosphate monohydrate Ca(H2PO4)2· H2O and calcium hydroxyapatite Ca10(PO4)6(OH)2. Monetite CaHPO4 and brushite CaHPO4· 2H2O were also present in the phase composition of the samples. The phase composition of prepared highly porous ceramic samples with relative density 27 – 55% after firing in a temperature range of 900 – 1100°C included β-tricalcium phosphate β–Ca3(PO4)2 and/or β-calcium pyrophosphate β–Ca2P2O7.
期刊介绍:
Glass and Ceramics reports on advances in basic and applied research and plant production techniques in glass and ceramics. The journal''s broad coverage includes developments in the areas of silicate chemistry, mineralogy and metallurgy, crystal chemistry, solid state reactions, raw materials, phase equilibria, reaction kinetics, physicochemical analysis, physics of dielectrics, and refractories, among others.