Hybridization Chain Reaction-Based Label-Free Colorimetric Sensor for Detection of Cancer Marker p53 Gene

IF 0.8 4区 化学 Q4 SPECTROSCOPY
S. Yang, L. Ren, Z. Qin, P. Zhang, Q. Zhang, J. Zhang, L. Jiang
{"title":"Hybridization Chain Reaction-Based Label-Free Colorimetric Sensor for Detection of Cancer Marker p53 Gene","authors":"S. Yang,&nbsp;L. Ren,&nbsp;Z. Qin,&nbsp;P. Zhang,&nbsp;Q. Zhang,&nbsp;J. Zhang,&nbsp;L. Jiang","doi":"10.1007/s10812-025-01869-2","DOIUrl":null,"url":null,"abstract":"<p>The p53 gene is an important tumour suppressor gene, which has an important impact on the early diagnosis of cancer. Here, inspired by the fact that single-stranded DNA (ss-DNA) can be nonspecifically adsorbed on the surface of nanogold, we report on a sensitive and cost-effective new method to detect the p53 gene by combining hybridization chain reaction (HCR) with gold nanoparticles. The long double helix structure generated by HCR could not be adsorbed on the nanogold surface after the addition of the p53 gene. When an appropriate amount of Na<sup>+</sup> is introduced into the solution, the nanogold aggregates and the color of the solution changes from red to blueviolet. The sensor has a high sensitivity with a detection limit of 2 nM visible to the naked eye and a quantitative detection limit of 0.2 nM using a UV-visible spectrophotometer. Notably, by combining fluorescence spectroscopy and gel electrophoresis, the science and specificity of p53 gene-induced HCR is systematically validated. The use of an enzyme-free, label-free colorimetric method to detect the p53 gene greatly reduces the complexity and cost of the experiment. This study has a broad market application prospect and provides a new method for early mass screening of cancer genes.</p>","PeriodicalId":609,"journal":{"name":"Journal of Applied Spectroscopy","volume":"91 6","pages":"1428 - 1438"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10812-025-01869-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The p53 gene is an important tumour suppressor gene, which has an important impact on the early diagnosis of cancer. Here, inspired by the fact that single-stranded DNA (ss-DNA) can be nonspecifically adsorbed on the surface of nanogold, we report on a sensitive and cost-effective new method to detect the p53 gene by combining hybridization chain reaction (HCR) with gold nanoparticles. The long double helix structure generated by HCR could not be adsorbed on the nanogold surface after the addition of the p53 gene. When an appropriate amount of Na+ is introduced into the solution, the nanogold aggregates and the color of the solution changes from red to blueviolet. The sensor has a high sensitivity with a detection limit of 2 nM visible to the naked eye and a quantitative detection limit of 0.2 nM using a UV-visible spectrophotometer. Notably, by combining fluorescence spectroscopy and gel electrophoresis, the science and specificity of p53 gene-induced HCR is systematically validated. The use of an enzyme-free, label-free colorimetric method to detect the p53 gene greatly reduces the complexity and cost of the experiment. This study has a broad market application prospect and provides a new method for early mass screening of cancer genes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
145
审稿时长
2.5 months
期刊介绍: Journal of Applied Spectroscopy reports on many key applications of spectroscopy in chemistry, physics, metallurgy, and biology. An increasing number of papers focus on the theory of lasers, as well as the tremendous potential for the practical applications of lasers in numerous fields and industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信