Noble Gases, Carbon and Nitrogen Isotopes in Different Lithologies of Pesyanoe: Irradiation History and Impact Processes on the Aubrite Parent Body

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
A. I. Buikin, A. B. Verchovsky, J. Hopp, C. A. Lorenz, E. V. Korochantseva, M. Trieloff, U. Ott
{"title":"Noble Gases, Carbon and Nitrogen Isotopes in Different Lithologies of Pesyanoe: Irradiation History and Impact Processes on the Aubrite Parent Body","authors":"A. I. Buikin,&nbsp;A. B. Verchovsky,&nbsp;J. Hopp,&nbsp;C. A. Lorenz,&nbsp;E. V. Korochantseva,&nbsp;M. Trieloff,&nbsp;U. Ott","doi":"10.1134/S0016702924700617","DOIUrl":null,"url":null,"abstract":"<p>We present the results of stepwise crushing and combustion analyses for noble gases, carbon and nitrogen in Pesyanoe aubrite pyroxene lithologies, composed of grey (Px-G) and light (Px-B) enstatites differing in the degree of impact processing and the number of inclusions. Our study identifies three main noble gas endmembers in Pesyanoe: a cosmogenic component, radiogenic <sup>40</sup>Ar, and an endmember representing a mixture of solar wind and Q components in variable proportions. Based on petrographic and noble gas data we argue that these gases accumulated in the material during its regolith history and were later redistributed into gas inclusions/voids as the result of an impact event. During impact metamorphism, Px-G acquired its grey color and multiple gas inclusions were formed within it, more than in case of Px-B. Our study demonstrates for the first time: (1) The host phase of gases trapped during shock metamorphism are grains of rock-forming minerals, in particular Px-G, due to the formation of a large number of cracks in the direction of cleavage during brittle deformation, (2) The gas capture is associated not with the final stage of the formation of consolidated fragmental breccia, at which lithification of the fragments occurred, but with one of the intermediate impact events. High amounts of trapped and cosmogenic noble gases are released during the stepwise crushing—significantly higher than in case of any other studied aubrite. Some unusually high <sup>36</sup>Ar/<sup>132</sup>Xe ratios (up to 54 780 versus 22 705 in the solar wind) were discovered during crushing of Px-G. Our preferable explanation of this phenomenon is a specific superposition of noble gas elemental fractionation processes related to the impact cratering of the Pesyanoe parent body. The carbon isotopic composition (δ<sup>13</sup>C = –21.2 ± 0.2‰, 1σ) is slightly heavier than that of the Bustee aubrite carbon. The combined use of different extraction methods made it possible to determine that the solar type and indigenous (δ<sup>15</sup>N<sub>indig</sub> = –0.1 ± 3.2‰, 1σ) nitrogen components are located in the gas inclusions, whereas the extraneous nitrogen component (~+45‰) is chemically bound. The large cosmic ray exposure age variations (44 and 55 Ma in case of Px-G and Px-B, respectively) and the heterogeneous distribution of solar-type gases in Pesyanoe aubrite point to a diverse irradiation history of the material before breccia formation. Alternatively/additionally, cosmogenic gases (as well as solar and primordial) in Px-G may have became lost and/or partly redistributed into gas inclusions as a result of the impact event.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 12","pages":"1291 - 1321"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702924700617.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924700617","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present the results of stepwise crushing and combustion analyses for noble gases, carbon and nitrogen in Pesyanoe aubrite pyroxene lithologies, composed of grey (Px-G) and light (Px-B) enstatites differing in the degree of impact processing and the number of inclusions. Our study identifies three main noble gas endmembers in Pesyanoe: a cosmogenic component, radiogenic 40Ar, and an endmember representing a mixture of solar wind and Q components in variable proportions. Based on petrographic and noble gas data we argue that these gases accumulated in the material during its regolith history and were later redistributed into gas inclusions/voids as the result of an impact event. During impact metamorphism, Px-G acquired its grey color and multiple gas inclusions were formed within it, more than in case of Px-B. Our study demonstrates for the first time: (1) The host phase of gases trapped during shock metamorphism are grains of rock-forming minerals, in particular Px-G, due to the formation of a large number of cracks in the direction of cleavage during brittle deformation, (2) The gas capture is associated not with the final stage of the formation of consolidated fragmental breccia, at which lithification of the fragments occurred, but with one of the intermediate impact events. High amounts of trapped and cosmogenic noble gases are released during the stepwise crushing—significantly higher than in case of any other studied aubrite. Some unusually high 36Ar/132Xe ratios (up to 54 780 versus 22 705 in the solar wind) were discovered during crushing of Px-G. Our preferable explanation of this phenomenon is a specific superposition of noble gas elemental fractionation processes related to the impact cratering of the Pesyanoe parent body. The carbon isotopic composition (δ13C = –21.2 ± 0.2‰, 1σ) is slightly heavier than that of the Bustee aubrite carbon. The combined use of different extraction methods made it possible to determine that the solar type and indigenous (δ15Nindig = –0.1 ± 3.2‰, 1σ) nitrogen components are located in the gas inclusions, whereas the extraneous nitrogen component (~+45‰) is chemically bound. The large cosmic ray exposure age variations (44 and 55 Ma in case of Px-G and Px-B, respectively) and the heterogeneous distribution of solar-type gases in Pesyanoe aubrite point to a diverse irradiation history of the material before breccia formation. Alternatively/additionally, cosmogenic gases (as well as solar and primordial) in Px-G may have became lost and/or partly redistributed into gas inclusions as a result of the impact event.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry International
Geochemistry International 地学-地球化学与地球物理
CiteScore
1.60
自引率
12.50%
发文量
89
审稿时长
1 months
期刊介绍: Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信