Construction of CS@APP@UiO-66 through self-assembly technology as flame retardant and smoke suppressant for epoxy resins

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Siqing Shao, Liping Jin, Siyuan He, Yijing Feng, Wenwen Guo
{"title":"Construction of CS@APP@UiO-66 through self-assembly technology as flame retardant and smoke suppressant for epoxy resins","authors":"Siqing Shao,&nbsp;Liping Jin,&nbsp;Siyuan He,&nbsp;Yijing Feng,&nbsp;Wenwen Guo","doi":"10.1007/s11705-025-2526-5","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve fire-resistant epoxy resin (EP), a UiO-66-based novel flame retardant coating (CS@APP@UiO-66) was prepared by modifying UiO-66 with chitosan (CS) and ammonium polyphosphate (APP) through a layer-by-layer (LbL) self-assembly method, which was then introduced into an EP system to improve its fire safety. The results of scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy show that the unsaturated Zr atoms in the UiO-66 framework provide many active sites conducive to modification, so that the UiO-66 particles, which originally had a regular octahedral structure, are more dispersed by LbL modification without causing doping or distortion issues. The thermogravimetric analysis results indicate that the char residue of EP/2% UiO-66 is increased by 2.52% compared with that of pure EP, indicating that the thermal properties of the EP composite are improved after modification. In addition, the cone test results indicate that EP/2%UiO-66-5L has good flame retardancy and smoke suppression properties, and the peak heat release rate, total smoke production and rate of CO generation values are 25.2%, 5.7% and 38.5% lower than those of the unmodified EP. Moreover, it can be concluded from the Raman test that the graphitization degree of the modified EP composite is strengthened. The above results indicated that after the incorporation of CS@APP@UiO-66 into the EP composites, more char layers formed as physical barriers to prevent the transfer of mass and heat, thus reducing the speed of flame propagation. Therefore, the flame resistance and smoke suppression of the EP composites improved. These favorable characteristics, including high flame retardant efficiency and good smoke suppression, make LbL-functionalized UiO-66 promising for flame retardant polymer applications.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2526-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve fire-resistant epoxy resin (EP), a UiO-66-based novel flame retardant coating (CS@APP@UiO-66) was prepared by modifying UiO-66 with chitosan (CS) and ammonium polyphosphate (APP) through a layer-by-layer (LbL) self-assembly method, which was then introduced into an EP system to improve its fire safety. The results of scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy show that the unsaturated Zr atoms in the UiO-66 framework provide many active sites conducive to modification, so that the UiO-66 particles, which originally had a regular octahedral structure, are more dispersed by LbL modification without causing doping or distortion issues. The thermogravimetric analysis results indicate that the char residue of EP/2% UiO-66 is increased by 2.52% compared with that of pure EP, indicating that the thermal properties of the EP composite are improved after modification. In addition, the cone test results indicate that EP/2%UiO-66-5L has good flame retardancy and smoke suppression properties, and the peak heat release rate, total smoke production and rate of CO generation values are 25.2%, 5.7% and 38.5% lower than those of the unmodified EP. Moreover, it can be concluded from the Raman test that the graphitization degree of the modified EP composite is strengthened. The above results indicated that after the incorporation of CS@APP@UiO-66 into the EP composites, more char layers formed as physical barriers to prevent the transfer of mass and heat, thus reducing the speed of flame propagation. Therefore, the flame resistance and smoke suppression of the EP composites improved. These favorable characteristics, including high flame retardant efficiency and good smoke suppression, make LbL-functionalized UiO-66 promising for flame retardant polymer applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信