Study on the preparation and performance of Cr2O3-MnOx nanocomposite material as cathode for aqueous zinc-ion batteries

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-12-12 DOI:10.1007/s11581-024-06011-4
Weiwei Zhang, Jiyao Zhou, Yafang Zhai, Tianpeng Zhang, Chao Liu, Ling Li
{"title":"Study on the preparation and performance of Cr2O3-MnOx nanocomposite material as cathode for aqueous zinc-ion batteries","authors":"Weiwei Zhang,&nbsp;Jiyao Zhou,&nbsp;Yafang Zhai,&nbsp;Tianpeng Zhang,&nbsp;Chao Liu,&nbsp;Ling Li","doi":"10.1007/s11581-024-06011-4","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the advantages of environmental protection and low cost, aqueous zinc-ion batteries are widely applied in the modern energy storage system. In this study, Cr<sub>2</sub>O<sub>3</sub>-MnO<sub>x</sub> composite material was synthesized via hydrothermal method and further applied as the cathode in aqueous zinc-ion batteries. By optimizing the chromium-to-manganese ratio and the amount of urea, and optimizing the hydrothermal and calcination conditions, the composite material with the best electrochemical performance was obtained. At the current density of 50 mA/g, the maximum capacity reached 384.7 mAh/g, and the cycling stability was also good. The physical characterization of the composite material with the most stable electrochemical performance reveals that its microstructure mainly consists of nanoparticles and nanocubes. The EDS elemental distribution tests show a relatively uniform distribution of manganese, chromium, and oxygen elements. The infrared and Raman spectroscopy indicate the stretching vibrations of Cr–O and Mn–O bonds. The XPS analysis reveals that the primary valence state of Cr is trivalent, while Mn exists in + 2, + 3, and + 4 oxidation states. The quantitative fitting analysis of XRD data shows that Cr<sub>2</sub>O<sub>3</sub> is the predominant component.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 2","pages":"1683 - 1698"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-06011-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the advantages of environmental protection and low cost, aqueous zinc-ion batteries are widely applied in the modern energy storage system. In this study, Cr2O3-MnOx composite material was synthesized via hydrothermal method and further applied as the cathode in aqueous zinc-ion batteries. By optimizing the chromium-to-manganese ratio and the amount of urea, and optimizing the hydrothermal and calcination conditions, the composite material with the best electrochemical performance was obtained. At the current density of 50 mA/g, the maximum capacity reached 384.7 mAh/g, and the cycling stability was also good. The physical characterization of the composite material with the most stable electrochemical performance reveals that its microstructure mainly consists of nanoparticles and nanocubes. The EDS elemental distribution tests show a relatively uniform distribution of manganese, chromium, and oxygen elements. The infrared and Raman spectroscopy indicate the stretching vibrations of Cr–O and Mn–O bonds. The XPS analysis reveals that the primary valence state of Cr is trivalent, while Mn exists in + 2, + 3, and + 4 oxidation states. The quantitative fitting analysis of XRD data shows that Cr2O3 is the predominant component.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信