Growth of trimetallic CeFeNi-MOF-74 on nickel foam as a bifunctional electrocatalyst for water splitting

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-12-12 DOI:10.1007/s11581-024-06010-5
Jun Zhang, Tao Long, Yangwen Liu, Zilang Zhong, Yang Zhang, XuChang Chen, Guanghuan Li
{"title":"Growth of trimetallic CeFeNi-MOF-74 on nickel foam as a bifunctional electrocatalyst for water splitting","authors":"Jun Zhang,&nbsp;Tao Long,&nbsp;Yangwen Liu,&nbsp;Zilang Zhong,&nbsp;Yang Zhang,&nbsp;XuChang Chen,&nbsp;Guanghuan Li","doi":"10.1007/s11581-024-06010-5","DOIUrl":null,"url":null,"abstract":"<p>In order to facilitate the industrial synthesis of hydrogen from electrolytic water on a wide scale, high-performance non-precious metal electrocatalysts that can substitute precious metal electrocatalysts must be developed. This paper reports a trimetallic CeFeNi-MOF-74 electrocatalyst grown on nickel foam (NF) by solvothermal method. The introduction of trimetallics gives the metal–organic framework (MOF) materials synergistic and complementary properties, resulting in better catalytic properties of the materials. Tuning the electronic structure of materials to Optimise electrocatalytic performance by adjusting metal ratio. It was found that the prepared Ce<sub>0.9</sub>FeNi-MOF-74 exhibited excellent electrocatalytic activity and stability in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In 1 M KOH, the overpotential is only 262 mV for HER at a current density of 100 mA cm<sup>−2</sup> and 257 mV for OER at a current density of 100 mA cm<sup>−2</sup>. For overall water splitting (OWS), a low voltage of only 1.68 V is required to achieve a 10 mA cm<sup>−2</sup> current density. The excellent catalytic performance of Ce<sub>0.9</sub>FeNi-MOF-74 exceeds that of many commercial catalysts. This study provides new insights into the synthesis of high-performance and stable MOF electrocatalysts.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 2","pages":"1937 - 1946"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-06010-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to facilitate the industrial synthesis of hydrogen from electrolytic water on a wide scale, high-performance non-precious metal electrocatalysts that can substitute precious metal electrocatalysts must be developed. This paper reports a trimetallic CeFeNi-MOF-74 electrocatalyst grown on nickel foam (NF) by solvothermal method. The introduction of trimetallics gives the metal–organic framework (MOF) materials synergistic and complementary properties, resulting in better catalytic properties of the materials. Tuning the electronic structure of materials to Optimise electrocatalytic performance by adjusting metal ratio. It was found that the prepared Ce0.9FeNi-MOF-74 exhibited excellent electrocatalytic activity and stability in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In 1 M KOH, the overpotential is only 262 mV for HER at a current density of 100 mA cm−2 and 257 mV for OER at a current density of 100 mA cm−2. For overall water splitting (OWS), a low voltage of only 1.68 V is required to achieve a 10 mA cm−2 current density. The excellent catalytic performance of Ce0.9FeNi-MOF-74 exceeds that of many commercial catalysts. This study provides new insights into the synthesis of high-performance and stable MOF electrocatalysts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信