Application of dry high-energy ball-milling to increase the density and grain boundary conductivity of solid ceramic electrolytes: Li1.3Al0.3Ti1.7(PO4)3 as a case study

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-12-09 DOI:10.1007/s11581-024-05986-4
Alexander A. Shindrov, Maria G. Skachilova, Alexandra A. Shapovalova, Nina V. Kosova
{"title":"Application of dry high-energy ball-milling to increase the density and grain boundary conductivity of solid ceramic electrolytes: Li1.3Al0.3Ti1.7(PO4)3 as a case study","authors":"Alexander A. Shindrov,&nbsp;Maria G. Skachilova,&nbsp;Alexandra A. Shapovalova,&nbsp;Nina V. Kosova","doi":"10.1007/s11581-024-05986-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the effect of high energy ball milling (HEBM) on the density and conductive properties of as-prepared Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) solid ceramic electrolyte has been demonstrated. It has been shown that the composition of the LATP phase remains unchanged after HEBM. A gradual decrease in the average crystallite size was observed during the HEBM duration. The multimodal particle size distribution in HEBM samples has a positive effect on their densification during pressing, allowing the use of low pressure (~ 5 MPa). High-density LATP ceramics (~ 89% of the theoretical value) with an ionic conductivity of 2.15∙10<sup>−4</sup> S∙cm<sup>−1</sup> were obtained after 30 min of HEBM. The value of electronic conductivity obtained by the analysis of DC polarization using blocking Ag electrodes is equal to 8.3∙10<sup>−9</sup> S∙cm<sup>−1</sup>. The HEBM approach is accessible and easy to implement. This method does not require high pressure, long sintering temperature and/or time, and additional reagents such as fusible additives. The use of HEBM allows the density and ionic conductivity of the resulting ceramics to be adjusted.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 2","pages":"1351 - 1360"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05986-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the effect of high energy ball milling (HEBM) on the density and conductive properties of as-prepared Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid ceramic electrolyte has been demonstrated. It has been shown that the composition of the LATP phase remains unchanged after HEBM. A gradual decrease in the average crystallite size was observed during the HEBM duration. The multimodal particle size distribution in HEBM samples has a positive effect on their densification during pressing, allowing the use of low pressure (~ 5 MPa). High-density LATP ceramics (~ 89% of the theoretical value) with an ionic conductivity of 2.15∙10−4 S∙cm−1 were obtained after 30 min of HEBM. The value of electronic conductivity obtained by the analysis of DC polarization using blocking Ag electrodes is equal to 8.3∙10−9 S∙cm−1. The HEBM approach is accessible and easy to implement. This method does not require high pressure, long sintering temperature and/or time, and additional reagents such as fusible additives. The use of HEBM allows the density and ionic conductivity of the resulting ceramics to be adjusted.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信