{"title":"Earthquake-proofing history: seismic assessment of Caserta Vecchia medieval bell tower","authors":"Elide Nastri, Annachiara D’Apice, Paolo Todisco","doi":"10.1007/s10518-024-02093-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an integrated approach for the seismic assessment of the 13th-century San Michele Arcangelo Cathedral Bell Tower in Caserta Vecchia, Italy, utilizing a detailed photogrammetric survey and Finite Element (FE) modelling. The analysis focuses on the structural vulnerability and seismic response of the historical masonry tower to assess its response against earthquake-induced damage. By employing Ambient Vibration Tests (AVTs) present in literature and calibrating the FE model accordingly, the research identifies the principal vibrational modes and natural frequencies of the tower, enhancing the model's accuracy. Various earthquake intensities were inputted to the structural model to evaluate the bell tower's structural performance and potential collapse mechanisms. The findings reveal a significant susceptibility of damage under severe seismic conditions, emphasizing the critical need for tailored conservation strategies to preserve such irreplaceable cultural heritage. The study underscores the importance of integrating historical documentation, structural analysis, and modern engineering techniques to safeguard historical architecture in seismically active areas.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 2","pages":"833 - 857"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02093-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an integrated approach for the seismic assessment of the 13th-century San Michele Arcangelo Cathedral Bell Tower in Caserta Vecchia, Italy, utilizing a detailed photogrammetric survey and Finite Element (FE) modelling. The analysis focuses on the structural vulnerability and seismic response of the historical masonry tower to assess its response against earthquake-induced damage. By employing Ambient Vibration Tests (AVTs) present in literature and calibrating the FE model accordingly, the research identifies the principal vibrational modes and natural frequencies of the tower, enhancing the model's accuracy. Various earthquake intensities were inputted to the structural model to evaluate the bell tower's structural performance and potential collapse mechanisms. The findings reveal a significant susceptibility of damage under severe seismic conditions, emphasizing the critical need for tailored conservation strategies to preserve such irreplaceable cultural heritage. The study underscores the importance of integrating historical documentation, structural analysis, and modern engineering techniques to safeguard historical architecture in seismically active areas.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.