Forecasting groundwater resources for future sustainability: a geospatial approach in the Himalayan Beas basin

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Utsav Rajput, Dericks Praise Shukla, Deepak Swami
{"title":"Forecasting groundwater resources for future sustainability: a geospatial approach in the Himalayan Beas basin","authors":"Utsav Rajput,&nbsp;Dericks Praise Shukla,&nbsp;Deepak Swami","doi":"10.1007/s12665-025-12120-8","DOIUrl":null,"url":null,"abstract":"<div><p>Groundwater constitutes approximately 30% of the world’s freshwater, making it an essential natural resource for all living beings. However, unplanned usage has resulted in the depletion of groundwater levels, necessitating sustainable management practices. Traditional field mapping of groundwater availability (GWA) is expensive and time-intensive, posing challenges to its effective management. This study proposes a simple methodology to predict the future groundwater availability using remote sensing and Geographical Information Systems (GIS) tools. Ten thematic layers depicting various basin characteristics including annual average rainfall for the year 2012 to 2021 were used to predict groundwater availability zones map for the year 2022 in the Beas river basin. Relative influence of each layer was computed using analytical hierarchy process with consistency ratio below 0.1. The results showed comprehensible dependence of groundwater availability over rainfall, being the prime source of groundwater recharge. The predicted GWA map showed higher groundwater availability in the western part of the basin due to higher rainfall, porous lithology, mild slope, lower drainage density and curvature as compared to the eastern part which consisted of the lower Himalayan region. The results were validated based on actual groundwater data yielding fairly accurate predictions with only 3 out of 35 stations not agreeing to the prediction. The predicted groundwater availability zones map outlines the areas with readily available groundwater in future and recommends the areas for groundwater recharge optimizing water management, aiding in drought preparedness, resource allocation, infrastructure planning, and environmental protection, ensuring sustainable usage and resilience to climate change.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12120-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater constitutes approximately 30% of the world’s freshwater, making it an essential natural resource for all living beings. However, unplanned usage has resulted in the depletion of groundwater levels, necessitating sustainable management practices. Traditional field mapping of groundwater availability (GWA) is expensive and time-intensive, posing challenges to its effective management. This study proposes a simple methodology to predict the future groundwater availability using remote sensing and Geographical Information Systems (GIS) tools. Ten thematic layers depicting various basin characteristics including annual average rainfall for the year 2012 to 2021 were used to predict groundwater availability zones map for the year 2022 in the Beas river basin. Relative influence of each layer was computed using analytical hierarchy process with consistency ratio below 0.1. The results showed comprehensible dependence of groundwater availability over rainfall, being the prime source of groundwater recharge. The predicted GWA map showed higher groundwater availability in the western part of the basin due to higher rainfall, porous lithology, mild slope, lower drainage density and curvature as compared to the eastern part which consisted of the lower Himalayan region. The results were validated based on actual groundwater data yielding fairly accurate predictions with only 3 out of 35 stations not agreeing to the prediction. The predicted groundwater availability zones map outlines the areas with readily available groundwater in future and recommends the areas for groundwater recharge optimizing water management, aiding in drought preparedness, resource allocation, infrastructure planning, and environmental protection, ensuring sustainable usage and resilience to climate change.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信