Cornelia F. Pichler, Richard Thelen, Thomas van de Kamp, Hendrik Hölscher
{"title":"Friction Coefficient Evolution of Drying Lubricant in the Joints of Beetles by Friction Force Microscopy","authors":"Cornelia F. Pichler, Richard Thelen, Thomas van de Kamp, Hendrik Hölscher","doi":"10.1007/s11249-025-01963-8","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies suggest that the joints of beetles and other insects comprise micro-structured surfaces in combination with lubricants. Here, we utilize friction force microscopy (FFM) to analyse the tribological properties of the femoro-tibial leg joints by the example of <i>Coelorrhina aurata</i> (metallic green flower beetle) and <i>Otiorhynchus sulcatus</i> (black vine weevil). To preserve the original state of the lubricant as well as the microstructures, the FFM measurements were conducted in silicone oil, which satisfies our requirements of transparency, customizable viscosity, absent health risks and lower density compared to the expected density of the lubricant. Microscopic friction was measured on fresh and air-dried samples to stress the change of the lubricant properties over time. Despite the similarity of the two beetle joints, the FFM measurements reveal different frictional properties of the respective lubricants.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-025-01963-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-01963-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies suggest that the joints of beetles and other insects comprise micro-structured surfaces in combination with lubricants. Here, we utilize friction force microscopy (FFM) to analyse the tribological properties of the femoro-tibial leg joints by the example of Coelorrhina aurata (metallic green flower beetle) and Otiorhynchus sulcatus (black vine weevil). To preserve the original state of the lubricant as well as the microstructures, the FFM measurements were conducted in silicone oil, which satisfies our requirements of transparency, customizable viscosity, absent health risks and lower density compared to the expected density of the lubricant. Microscopic friction was measured on fresh and air-dried samples to stress the change of the lubricant properties over time. Despite the similarity of the two beetle joints, the FFM measurements reveal different frictional properties of the respective lubricants.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.