Amylopectin extraction from kernels as a sustainable additive for enhancing the performance of natural hydraulic lime mortar for restoration applications
{"title":"Amylopectin extraction from kernels as a sustainable additive for enhancing the performance of natural hydraulic lime mortar for restoration applications","authors":"Nisha Sankar, Ravi Ramadoss","doi":"10.1140/epjp/s13360-025-06019-3","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents an innovative study that experimentally investigates the role of amylopectin, extracted from kernels, on the mechanical, physical, and durability properties of natural hydraulic lime (NHL) mortars. Polysaccharides of amylopectin play a major role in increasing the workability of the additive-modified mortar. The amylopectin-modified mortar enhances its compressive strength by 1.68 times compared to the reference mortar. The amylopectin-modified mortar improves its mechanical properties without compromising water absorption and porosity, thus preserving the breathability of the restoration mortar. Amylopectin enhances the hydrophobic property of NHL mortar, forming an outer layer that is resistant to water and salt deposition. The modified mortar’s moisture-holding capacity improves carbonation and reduces drying shrinkage. The polysaccharides of amylopectin enhance the carbonation, regulate the growth of calcite crystals, and result in a denser microstructure, leading to enhanced strength gain. We have also studied the microstructure and morphology characteristics of the modified mortar using XRD, FT-IR, and SEM. We can further extend the investigation to examine the crack capacity of this amylopectin-modified NHL mortar.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06019-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an innovative study that experimentally investigates the role of amylopectin, extracted from kernels, on the mechanical, physical, and durability properties of natural hydraulic lime (NHL) mortars. Polysaccharides of amylopectin play a major role in increasing the workability of the additive-modified mortar. The amylopectin-modified mortar enhances its compressive strength by 1.68 times compared to the reference mortar. The amylopectin-modified mortar improves its mechanical properties without compromising water absorption and porosity, thus preserving the breathability of the restoration mortar. Amylopectin enhances the hydrophobic property of NHL mortar, forming an outer layer that is resistant to water and salt deposition. The modified mortar’s moisture-holding capacity improves carbonation and reduces drying shrinkage. The polysaccharides of amylopectin enhance the carbonation, regulate the growth of calcite crystals, and result in a denser microstructure, leading to enhanced strength gain. We have also studied the microstructure and morphology characteristics of the modified mortar using XRD, FT-IR, and SEM. We can further extend the investigation to examine the crack capacity of this amylopectin-modified NHL mortar.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.