Xiao Sun
(, ), Xiaohong Wang
(, ), Bingjie Wu
(, ), Qianhong Yang
(, ), Congxiao Zhu
(, ), Huimin Zhang
(, ), Qian Li
(, ), Hongru Zhou
(, ), Minghui Guo
(, ), Lin Gui
(, ), Lei Li
(, )
{"title":"A biomimetic magnetically responsive scaffold with tunable and stable compression for dynamic 3D cell culture","authors":"Xiao Sun \n (, ), Xiaohong Wang \n (, ), Bingjie Wu \n (, ), Qianhong Yang \n (, ), Congxiao Zhu \n (, ), Huimin Zhang \n (, ), Qian Li \n (, ), Hongru Zhou \n (, ), Minghui Guo \n (, ), Lin Gui \n (, ), Lei Li \n (, )","doi":"10.1007/s40843-024-3216-6","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetically responsive scaffolds are extensively utilized in tissue engineering for their ability to simulate dynamic three-dimensional (3D) cell microenvironment in a rapid, reversible, and contactless manner. However, existing magnetic scaffolds struggle to provide tunable dynamic compression comparable to natural tissues due to the weak magnetism of magnetic nanoparticles and the mechanical brittleness of hydrogels. Here, we propose a biomimetic 3D magnetic scaffold offering tunable and stable magnetically induced compression for dynamic 3D cell culture. By employing hard magnetic particles NdFeB@SiO<sub>2</sub> and a mechanically stable elastomer, Ecoflex, the scaffold achieves 15% compression in the magnetic field (240 mT). Moreover, this magnetic scaffold demonstrates remarkable deformation and mechanical stability during 4000 compression cycles. The magnetic scaffold exhibits stiffness (0.78 kPa) and viscoelasticity (relaxation time of 17 s) similar to adipose tissue. Notably, it is verified that human adipose-derived stem cells (hADSCs) are successfully cultured in this magnetic scaffold and the proliferation of hADSCs can be modulated by magnetically induced dynamic compression. This magnetic scaffold for dynamic 3D cell culture can be potentially utilized in cell biology and tissue engineering.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"652 - 665"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3216-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetically responsive scaffolds are extensively utilized in tissue engineering for their ability to simulate dynamic three-dimensional (3D) cell microenvironment in a rapid, reversible, and contactless manner. However, existing magnetic scaffolds struggle to provide tunable dynamic compression comparable to natural tissues due to the weak magnetism of magnetic nanoparticles and the mechanical brittleness of hydrogels. Here, we propose a biomimetic 3D magnetic scaffold offering tunable and stable magnetically induced compression for dynamic 3D cell culture. By employing hard magnetic particles NdFeB@SiO2 and a mechanically stable elastomer, Ecoflex, the scaffold achieves 15% compression in the magnetic field (240 mT). Moreover, this magnetic scaffold demonstrates remarkable deformation and mechanical stability during 4000 compression cycles. The magnetic scaffold exhibits stiffness (0.78 kPa) and viscoelasticity (relaxation time of 17 s) similar to adipose tissue. Notably, it is verified that human adipose-derived stem cells (hADSCs) are successfully cultured in this magnetic scaffold and the proliferation of hADSCs can be modulated by magnetically induced dynamic compression. This magnetic scaffold for dynamic 3D cell culture can be potentially utilized in cell biology and tissue engineering.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.