{"title":"Ambient pressure dried graphene oxide-silica composite aerogels as pharmaceutical nanocarriers","authors":"Elif Çalışkan Salihi, Ali Zarrabi, Atefeh Zarepour, Merve Gürboğa, Shalaleh Hasan Niari Niar, Özlem Bingöl Özakpınar, Jiabin Wang, Havva Daştan, Arezoo Khosravi, Lidija Šiller","doi":"10.1007/s10971-024-06624-1","DOIUrl":null,"url":null,"abstract":"<div><p>Research on the production of graphene, its derivatives and composites has been enhanced in the past two decades. Graphene is well known for its exceptional physicochemical properties including extensive surface area, good biocompatibility, high loading capacity, and functionalization capability which make it an ideal candidate for drug delivery systems. When compared to the other nanomaterials, aerogels are relatively new materials characterized by their unparalleled porosities and extensive surface areas. The ability to carry drugs is crucial in drug delivery systems, and the large surface area of graphene coupled with the high porosity of aerogels presents a significant potential for use in this domain. In this study, graphene oxide-silica composite aerogel nanostructures were synthesized firstly, using the sol-gel method and ambient pressure drying technique which offer advantages in terms of both time and cost efficiency. Then, the formulation was also fabricated in the functionalized forms with sodium dodecyl sulfate, polyvinylpyrrolidone and ethylenediaminetetraacetic acid. Different physicochemical characteristics of these new materials were investigated using SEM/EDS, XRD, Raman spectroscopy, FTIR spectroscopy, TGA and DLS techniques. Drug loading tests were done using curcumin and methylene blue, while the biocompatibility of the nanocarriers was assessed through cell viability assay. Results of different tests confirmed the successful fabrication of the aerogels with different functionalizations, which had encapsulation capacity ranged between 20–90% and high biocompatibility after exposing with cells. Based on these promising results, this study confirms that aerogel-based platforms produced have potential to be used as nanocarriers for drug delivery systems.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 2","pages":"548 - 558"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06624-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Research on the production of graphene, its derivatives and composites has been enhanced in the past two decades. Graphene is well known for its exceptional physicochemical properties including extensive surface area, good biocompatibility, high loading capacity, and functionalization capability which make it an ideal candidate for drug delivery systems. When compared to the other nanomaterials, aerogels are relatively new materials characterized by their unparalleled porosities and extensive surface areas. The ability to carry drugs is crucial in drug delivery systems, and the large surface area of graphene coupled with the high porosity of aerogels presents a significant potential for use in this domain. In this study, graphene oxide-silica composite aerogel nanostructures were synthesized firstly, using the sol-gel method and ambient pressure drying technique which offer advantages in terms of both time and cost efficiency. Then, the formulation was also fabricated in the functionalized forms with sodium dodecyl sulfate, polyvinylpyrrolidone and ethylenediaminetetraacetic acid. Different physicochemical characteristics of these new materials were investigated using SEM/EDS, XRD, Raman spectroscopy, FTIR spectroscopy, TGA and DLS techniques. Drug loading tests were done using curcumin and methylene blue, while the biocompatibility of the nanocarriers was assessed through cell viability assay. Results of different tests confirmed the successful fabrication of the aerogels with different functionalizations, which had encapsulation capacity ranged between 20–90% and high biocompatibility after exposing with cells. Based on these promising results, this study confirms that aerogel-based platforms produced have potential to be used as nanocarriers for drug delivery systems.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.