Aramid nanofibers at ultralow loadings: driving significant multifunctionality in epoxy composite dielectrics

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Haowen Yuan, Zi Wang, Di Lan, Siyuan Zhang, Zicheng Zang, Guoqing Jiang, Huachao Wei, Yiyi Zhang, Jiajia Zheng, Junwen Ren, Guanglei Wu, Shenli Jia
{"title":"Aramid nanofibers at ultralow loadings: driving significant multifunctionality in epoxy composite dielectrics","authors":"Haowen Yuan,&nbsp;Zi Wang,&nbsp;Di Lan,&nbsp;Siyuan Zhang,&nbsp;Zicheng Zang,&nbsp;Guoqing Jiang,&nbsp;Huachao Wei,&nbsp;Yiyi Zhang,&nbsp;Jiajia Zheng,&nbsp;Junwen Ren,&nbsp;Guanglei Wu,&nbsp;Shenli Jia","doi":"10.1007/s42114-025-01222-3","DOIUrl":null,"url":null,"abstract":"<div><p>Epoxy dielectrics with superior insulation, mechanical, and thermal performance are of great interest for electrical equipment and power electronics. However, integrating these excellent advantages into epoxy presents a formidable challenge. Herein, we detail a simple yet effective strategy for the concurrent enhancement of the dielectric breakdown strength, mechanical toughness, mechanical strength, and the glass transition temperature (<i>T</i><sub>g</sub>) of the epoxy dielectrics by incorporation of a minimal amount of aramid nanofibers (ANFs). It is revealed that a robust interfacial interaction is established between epoxy matrix and the high aspect ratio of ANFs as corroborated by both molecular dynamics simulations and dielectric relaxation spectroscopy. The strong interaction facilitates an optimized interface that enables efficient transfer of interfacial stress and energy dissipation, in turn conferring the ANFs/Epoxy with exceptional mechanical strength (up to 75.68 MPa) and toughness (195 MJ/m<sup>3</sup>) as well as high <i>T</i><sub>g</sub> (155 °C), respectively. Furthermore, the incorporation of ANFs introduces a multitude of deep traps which effectively impede the migration of charge carriers, contributing to a substantial improvement of the dielectric breakdown strength (196.8 kV/mm) of the ANFs/Epoxy composite, which is almost 4.1 times higher than that of epoxy.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01222-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01222-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Epoxy dielectrics with superior insulation, mechanical, and thermal performance are of great interest for electrical equipment and power electronics. However, integrating these excellent advantages into epoxy presents a formidable challenge. Herein, we detail a simple yet effective strategy for the concurrent enhancement of the dielectric breakdown strength, mechanical toughness, mechanical strength, and the glass transition temperature (Tg) of the epoxy dielectrics by incorporation of a minimal amount of aramid nanofibers (ANFs). It is revealed that a robust interfacial interaction is established between epoxy matrix and the high aspect ratio of ANFs as corroborated by both molecular dynamics simulations and dielectric relaxation spectroscopy. The strong interaction facilitates an optimized interface that enables efficient transfer of interfacial stress and energy dissipation, in turn conferring the ANFs/Epoxy with exceptional mechanical strength (up to 75.68 MPa) and toughness (195 MJ/m3) as well as high Tg (155 °C), respectively. Furthermore, the incorporation of ANFs introduces a multitude of deep traps which effectively impede the migration of charge carriers, contributing to a substantial improvement of the dielectric breakdown strength (196.8 kV/mm) of the ANFs/Epoxy composite, which is almost 4.1 times higher than that of epoxy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信