miRNAs and their multifaceted role in cutaneous wound healing

IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY
Reda M. Mansour, Sherif S. Abdel Mageed, Farah A. Awad, Mohamed M. Sadek, Shehab Ahmed Adel, Alaa Ashraf, Khaled M. Alam-Eldein, Nada E. Ahmed, Rana Y. Abdelaziz, Esraa Farid Tolba, Hend H. Mohamed, Nehal I. Rizk, Mohamed O. Mohamed, Osama A. Mohammed, Ahmed S. Doghish
{"title":"miRNAs and their multifaceted role in cutaneous wound healing","authors":"Reda M. Mansour,&nbsp;Sherif S. Abdel Mageed,&nbsp;Farah A. Awad,&nbsp;Mohamed M. Sadek,&nbsp;Shehab Ahmed Adel,&nbsp;Alaa Ashraf,&nbsp;Khaled M. Alam-Eldein,&nbsp;Nada E. Ahmed,&nbsp;Rana Y. Abdelaziz,&nbsp;Esraa Farid Tolba,&nbsp;Hend H. Mohamed,&nbsp;Nehal I. Rizk,&nbsp;Mohamed O. Mohamed,&nbsp;Osama A. Mohammed,&nbsp;Ahmed S. Doghish","doi":"10.1007/s10142-025-01535-y","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic, complex process of cutaneous wound healing is required to restore skin integrity following an injury. This intricate process consists of four sequential and overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Hemostasis immediately begins to function in response to vascular injury, forming a clot that stops the bleeding. To fight infection and remove debris, immune cells are enlisted during the inflammatory phase. Angiogenesis, re-epithelialization, and the creation of new tissue are all components of proliferation, whereas tissue maturation and scarring are the outcomes of remodeling. Chronic wounds, like those found in diabetic ulcers, frequently stay in a state of chronic inflammation because they are unable to go through these stages in a coordinated manner. The important regulatory roles that microRNAs (miRNAs) play in both normal and pathological wound healing have been highlighted by recent investigations. The miRNAs, small non-coding RNAs, modulate gene expression post-transcriptionally, profoundly impacting cellular functions. During the inflammatory phase, miRNAs control pro- and anti-inflammatory cytokines, as well as the activity of immune cells such as neutrophils and macrophages. Additionally, miRNAs are essential components of signaling networks related to inflammation, such as the toll-like receptor (TLR), nuclear factor kappa B (NF-kB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. Some miRNAs have been discovered to either increase or alleviate inflammatory reactions, indicating their potential as therapeutic targets. Other miRNAs aid in angiogenesis by promoting the development of new blood vessels, which are essential for providing oxygen and nutrients to the healing tissue. They also affect keratinocyte migration and proliferation during the re-epithelialization phase, which involves growing new epithelial cells over the lesion. Another function of miRNAs is that they control the deposition of extracellular matrix (ECM) and the creation of scars during the remodeling phase. The abnormal expression of miRNAs in chronic wounds has led to the exploration of miRNA-based treatments. With a focus on resistant instances such as diabetic wounds, these therapeutic techniques seek to improve wound healing results by correcting the dysregulated miRNA expression.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01535-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic, complex process of cutaneous wound healing is required to restore skin integrity following an injury. This intricate process consists of four sequential and overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Hemostasis immediately begins to function in response to vascular injury, forming a clot that stops the bleeding. To fight infection and remove debris, immune cells are enlisted during the inflammatory phase. Angiogenesis, re-epithelialization, and the creation of new tissue are all components of proliferation, whereas tissue maturation and scarring are the outcomes of remodeling. Chronic wounds, like those found in diabetic ulcers, frequently stay in a state of chronic inflammation because they are unable to go through these stages in a coordinated manner. The important regulatory roles that microRNAs (miRNAs) play in both normal and pathological wound healing have been highlighted by recent investigations. The miRNAs, small non-coding RNAs, modulate gene expression post-transcriptionally, profoundly impacting cellular functions. During the inflammatory phase, miRNAs control pro- and anti-inflammatory cytokines, as well as the activity of immune cells such as neutrophils and macrophages. Additionally, miRNAs are essential components of signaling networks related to inflammation, such as the toll-like receptor (TLR), nuclear factor kappa B (NF-kB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. Some miRNAs have been discovered to either increase or alleviate inflammatory reactions, indicating their potential as therapeutic targets. Other miRNAs aid in angiogenesis by promoting the development of new blood vessels, which are essential for providing oxygen and nutrients to the healing tissue. They also affect keratinocyte migration and proliferation during the re-epithelialization phase, which involves growing new epithelial cells over the lesion. Another function of miRNAs is that they control the deposition of extracellular matrix (ECM) and the creation of scars during the remodeling phase. The abnormal expression of miRNAs in chronic wounds has led to the exploration of miRNA-based treatments. With a focus on resistant instances such as diabetic wounds, these therapeutic techniques seek to improve wound healing results by correcting the dysregulated miRNA expression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
3.40%
发文量
92
审稿时长
2 months
期刊介绍: Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信