Xianqiang Song
(, ), Yunlong He
(, ), Zhan Wang
(, ), Xiaoli Lu
(, ), Jing Sun
(, ), Ying Zhou
(, ), Yang Liu
(, ), Jiatong Fan
(, ), Xiaoning He
(, ), Xuefeng Zheng
(, ), Xiaohua Ma
(, ), Yue Hao
(, )
{"title":"The in-situ parasitic microstructure interface and defect formation mechanism in (010) β-Ga2O3 epitaxial film via MOCVD","authors":"Xianqiang Song \n (, ), Yunlong He \n (, ), Zhan Wang \n (, ), Xiaoli Lu \n (, ), Jing Sun \n (, ), Ying Zhou \n (, ), Yang Liu \n (, ), Jiatong Fan \n (, ), Xiaoning He \n (, ), Xuefeng Zheng \n (, ), Xiaohua Ma \n (, ), Yue Hao \n (, )","doi":"10.1007/s40843-024-3221-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a typical hillock surface defect was discovered in (010) <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> thin films grown by metal-organic chemical vapor deposition (MOCVD), and the morphology and structure were systematically investigated. The observed defects exhibit a polygonal shape with a ridge-like hillock along the [001] direction. Transmission electron microscopy (TEM) microanalysis reveals that polygonal hillock defects are composed of twin grains forming an inverted pyramid shape embedded in the epitaxial layer, which exhibits twofold rotational symmetry along the [100] crystal direction. The boundary between the defective and perfect lattices appears band-like, characterized by complex faults, with structural relationships between the twin region and the matrix identified as [001]<sub>matrix</sub>∥[010]<sub>Defect</sub> and {−310}<sub>matrix</sub>∥{−201}<sub>Defect</sub>. The origin of surface defects in the (010) <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> homoepitaxial layers could be attributed not only to the extent of substrate defects but also to epitaxial process conditions. The definitive explanation is the localized aggregation of gallium atoms/oxygen vacancies during the growth process, as evidenced by energy-dispersive X-ray (EDX) analysis and optimized experiments. This work provides brand-new perspectives into the study of defects in <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> epitaxial films, which further advances the application of Ga<sub>2</sub>O<sub>3</sub> materials in power device technologies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"515 - 522"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3221-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a typical hillock surface defect was discovered in (010) β-Ga2O3 thin films grown by metal-organic chemical vapor deposition (MOCVD), and the morphology and structure were systematically investigated. The observed defects exhibit a polygonal shape with a ridge-like hillock along the [001] direction. Transmission electron microscopy (TEM) microanalysis reveals that polygonal hillock defects are composed of twin grains forming an inverted pyramid shape embedded in the epitaxial layer, which exhibits twofold rotational symmetry along the [100] crystal direction. The boundary between the defective and perfect lattices appears band-like, characterized by complex faults, with structural relationships between the twin region and the matrix identified as [001]matrix∥[010]Defect and {−310}matrix∥{−201}Defect. The origin of surface defects in the (010) β-Ga2O3 homoepitaxial layers could be attributed not only to the extent of substrate defects but also to epitaxial process conditions. The definitive explanation is the localized aggregation of gallium atoms/oxygen vacancies during the growth process, as evidenced by energy-dispersive X-ray (EDX) analysis and optimized experiments. This work provides brand-new perspectives into the study of defects in β-Ga2O3 epitaxial films, which further advances the application of Ga2O3 materials in power device technologies.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.