The in-situ parasitic microstructure interface and defect formation mechanism in (010) β-Ga2O3 epitaxial film via MOCVD

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xianqiang Song  (, ), Yunlong He  (, ), Zhan Wang  (, ), Xiaoli Lu  (, ), Jing Sun  (, ), Ying Zhou  (, ), Yang Liu  (, ), Jiatong Fan  (, ), Xiaoning He  (, ), Xuefeng Zheng  (, ), Xiaohua Ma  (, ), Yue Hao  (, )
{"title":"The in-situ parasitic microstructure interface and defect formation mechanism in (010) β-Ga2O3 epitaxial film via MOCVD","authors":"Xianqiang Song \n (,&nbsp;),&nbsp;Yunlong He \n (,&nbsp;),&nbsp;Zhan Wang \n (,&nbsp;),&nbsp;Xiaoli Lu \n (,&nbsp;),&nbsp;Jing Sun \n (,&nbsp;),&nbsp;Ying Zhou \n (,&nbsp;),&nbsp;Yang Liu \n (,&nbsp;),&nbsp;Jiatong Fan \n (,&nbsp;),&nbsp;Xiaoning He \n (,&nbsp;),&nbsp;Xuefeng Zheng \n (,&nbsp;),&nbsp;Xiaohua Ma \n (,&nbsp;),&nbsp;Yue Hao \n (,&nbsp;)","doi":"10.1007/s40843-024-3221-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a typical hillock surface defect was discovered in (010) <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> thin films grown by metal-organic chemical vapor deposition (MOCVD), and the morphology and structure were systematically investigated. The observed defects exhibit a polygonal shape with a ridge-like hillock along the [001] direction. Transmission electron microscopy (TEM) microanalysis reveals that polygonal hillock defects are composed of twin grains forming an inverted pyramid shape embedded in the epitaxial layer, which exhibits twofold rotational symmetry along the [100] crystal direction. The boundary between the defective and perfect lattices appears band-like, characterized by complex faults, with structural relationships between the twin region and the matrix identified as [001]<sub>matrix</sub>∥[010]<sub>Defect</sub> and {−310}<sub>matrix</sub>∥{−201}<sub>Defect</sub>. The origin of surface defects in the (010) <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> homoepitaxial layers could be attributed not only to the extent of substrate defects but also to epitaxial process conditions. The definitive explanation is the localized aggregation of gallium atoms/oxygen vacancies during the growth process, as evidenced by energy-dispersive X-ray (EDX) analysis and optimized experiments. This work provides brand-new perspectives into the study of defects in <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> epitaxial films, which further advances the application of Ga<sub>2</sub>O<sub>3</sub> materials in power device technologies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"515 - 522"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3221-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a typical hillock surface defect was discovered in (010) β-Ga2O3 thin films grown by metal-organic chemical vapor deposition (MOCVD), and the morphology and structure were systematically investigated. The observed defects exhibit a polygonal shape with a ridge-like hillock along the [001] direction. Transmission electron microscopy (TEM) microanalysis reveals that polygonal hillock defects are composed of twin grains forming an inverted pyramid shape embedded in the epitaxial layer, which exhibits twofold rotational symmetry along the [100] crystal direction. The boundary between the defective and perfect lattices appears band-like, characterized by complex faults, with structural relationships between the twin region and the matrix identified as [001]matrix∥[010]Defect and {−310}matrix∥{−201}Defect. The origin of surface defects in the (010) β-Ga2O3 homoepitaxial layers could be attributed not only to the extent of substrate defects but also to epitaxial process conditions. The definitive explanation is the localized aggregation of gallium atoms/oxygen vacancies during the growth process, as evidenced by energy-dispersive X-ray (EDX) analysis and optimized experiments. This work provides brand-new perspectives into the study of defects in β-Ga2O3 epitaxial films, which further advances the application of Ga2O3 materials in power device technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信