Effect of annealing temperature on structural, optical and electrical properties of CdO nanoparticles for lighting applications

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Jaswanth Arcot, Kaleemulla Shaik
{"title":"Effect of annealing temperature on structural, optical and electrical properties of CdO nanoparticles for lighting applications","authors":"Jaswanth Arcot,&nbsp;Kaleemulla Shaik","doi":"10.1140/epjb/s10051-025-00867-9","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium oxide (CdO) nanoparticles (NP) were prepared using mechanical milling and annealing. The CdO powders were grinded for 16 h using Agate mortar and Pestle and subjected to air annealing at 400 °C, 500 °C, 600 °C and 700 °C for one hour. The powder samples annealed at different temperatures were subjected to various characterization techniques such as XRD, UV–Vis-NIR spectroscopy, FT-IR spectroscopy, Raman spectroscopy, photoluminescence spectrophotometer and electrical measurements. The XRD results confirmed the polycrystalline cubic structure of the CdO nanoparticles. Rietveld analysis from XRD revealed the structural formation of CdO nanoparticles. The crystallite size decreased from 33 to 24 nm with an increase in annealing temperature. The chemical bonds in FT-IR spectra confirmed the formation of CdO nanoparticles. Raman spectra of the CdO nanparticles were recorded at room temperature and observed two distinct peaks at 269 cm<sup>−1</sup> and 956 cm<sup>−1</sup>. Optical absorbance and reflectance spectra were recorded using UV–Vis-NIR spectrophotometer and the optical band gap of the nanoparticles were calculated using Tauc’s relation and Cody’ method. A decrease in the band gap was observed in both methods. The PL spectra of the CdO nanoparticles were recorded at room temperature with an excitation wavelength of 380 nm and observed emission peaks at 423 nm, 485 nm, 532 nm, and 606 nm. The electrical resistivity of the CdO nanoparticles was studied using two-probe method using the Keithley source meter and observed decrease in resistivity with annealing temperature.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00867-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium oxide (CdO) nanoparticles (NP) were prepared using mechanical milling and annealing. The CdO powders were grinded for 16 h using Agate mortar and Pestle and subjected to air annealing at 400 °C, 500 °C, 600 °C and 700 °C for one hour. The powder samples annealed at different temperatures were subjected to various characterization techniques such as XRD, UV–Vis-NIR spectroscopy, FT-IR spectroscopy, Raman spectroscopy, photoluminescence spectrophotometer and electrical measurements. The XRD results confirmed the polycrystalline cubic structure of the CdO nanoparticles. Rietveld analysis from XRD revealed the structural formation of CdO nanoparticles. The crystallite size decreased from 33 to 24 nm with an increase in annealing temperature. The chemical bonds in FT-IR spectra confirmed the formation of CdO nanoparticles. Raman spectra of the CdO nanparticles were recorded at room temperature and observed two distinct peaks at 269 cm−1 and 956 cm−1. Optical absorbance and reflectance spectra were recorded using UV–Vis-NIR spectrophotometer and the optical band gap of the nanoparticles were calculated using Tauc’s relation and Cody’ method. A decrease in the band gap was observed in both methods. The PL spectra of the CdO nanoparticles were recorded at room temperature with an excitation wavelength of 380 nm and observed emission peaks at 423 nm, 485 nm, 532 nm, and 606 nm. The electrical resistivity of the CdO nanoparticles was studied using two-probe method using the Keithley source meter and observed decrease in resistivity with annealing temperature.

Graphical abstract

退火温度对照明用CdO纳米颗粒结构、光学和电学性能的影响
采用机械研磨和退火法制备了氧化镉纳米颗粒。将CdO粉末用玛瑙砂浆和杵研磨16 h,在400℃、500℃、600℃和700℃下空气退火1 h。采用XRD、UV-Vis-NIR、FT-IR、拉曼光谱、光致发光分光光度计、电测量等表征方法对不同温度退火后的粉末样品进行表征。XRD结果证实了CdO纳米颗粒的多晶立方结构。XRD的Rietveld分析揭示了CdO纳米颗粒的结构形成。随着退火温度的升高,晶粒尺寸从33 nm减小到24 nm。红外光谱的化学键证实了CdO纳米颗粒的形成。在室温下记录了CdO纳米粒子的拉曼光谱,在269 cm−1和956 cm−1处观察到两个不同的峰。利用紫外-可见-近红外分光光度计记录了纳米粒子的光学吸光度和反射光谱,利用陶克关系法和科迪法计算了纳米粒子的光学带隙。在两种方法中都观察到带隙的减小。在室温下,以380 nm激发波长记录了CdO纳米颗粒的PL光谱,在423 nm、485 nm、532 nm和606 nm处观察到发射峰。利用Keithley源计采用双探针法研究了CdO纳米颗粒的电阻率,观察到电阻率随退火温度的升高而降低。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信