Singular Lagrangians and the Hamilton-Jacobi Formalism in Classical Mechanics

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Luis Gerardo Romero Hernández, Jaime Manuel Cabrera, Ramón Eduardo Chan López, Jorge Mauricio Paulin Fuentes
{"title":"Singular Lagrangians and the Hamilton-Jacobi Formalism in Classical Mechanics","authors":"Luis Gerardo Romero Hernández,&nbsp;Jaime Manuel Cabrera,&nbsp;Ramón Eduardo Chan López,&nbsp;Jorge Mauricio Paulin Fuentes","doi":"10.1007/s10773-025-05887-w","DOIUrl":null,"url":null,"abstract":"<div><p>This work conducts a Hamilton-Jacobi analysis of classical dynamical systems with internal constraints. We examine four systems, all previously analyzed by David Brown: three with familiar components (point masses, springs, rods, ropes, and pulleys) and one chosen specifically for its detailed illustration of the Dirac-Bergmann algorithm’s logical steps. Including this fourth system allows for a direct and insightful comparison with the Hamilton-Jacobi formalism, thereby deepening our understanding of both methods. To provide a thorough analysis, we classify the systems based on their constraints: non-involutive, involutive, and a combination of both. We then use generalized brackets to ensure the theory’s integrability, systematically remove non-involutive constraints, and derive the equations of motion. This approach effectively showcases the Hamilton-Jacobi method’s ability to handle complex constraint structures. Additionally, our study includes an analysis of a gauge system, highlighting the versatility and broad applicability of the Hamilton-Jacobi formalism. By comparing our results with those from the Dirac-Bergmann and Faddeev-Jackiw algorithms, we demonstrate that the Hamilton-Jacobi approach is simpler and more efficient in its mathematical operations and offers advantages in computational implementation.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05887-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work conducts a Hamilton-Jacobi analysis of classical dynamical systems with internal constraints. We examine four systems, all previously analyzed by David Brown: three with familiar components (point masses, springs, rods, ropes, and pulleys) and one chosen specifically for its detailed illustration of the Dirac-Bergmann algorithm’s logical steps. Including this fourth system allows for a direct and insightful comparison with the Hamilton-Jacobi formalism, thereby deepening our understanding of both methods. To provide a thorough analysis, we classify the systems based on their constraints: non-involutive, involutive, and a combination of both. We then use generalized brackets to ensure the theory’s integrability, systematically remove non-involutive constraints, and derive the equations of motion. This approach effectively showcases the Hamilton-Jacobi method’s ability to handle complex constraint structures. Additionally, our study includes an analysis of a gauge system, highlighting the versatility and broad applicability of the Hamilton-Jacobi formalism. By comparing our results with those from the Dirac-Bergmann and Faddeev-Jackiw algorithms, we demonstrate that the Hamilton-Jacobi approach is simpler and more efficient in its mathematical operations and offers advantages in computational implementation.

Abstract Image

经典力学中的奇异拉格朗日量与哈密顿-雅可比形式
本工作对具有内部约束的经典动力系统进行了Hamilton-Jacobi分析。我们研究了四个系统,都是大卫·布朗以前分析过的:三个有熟悉的组件(点质量、弹簧、杆、绳和滑轮),一个是专门选择的,因为它详细说明了狄拉克-伯格曼算法的逻辑步骤。包括这第四个系统允许与汉密尔顿-雅可比形式主义进行直接和深刻的比较,从而加深我们对这两种方法的理解。为了提供一个彻底的分析,我们根据它们的约束对系统进行分类:非对合的,对合的,以及两者的组合。然后,我们使用广义括号来确保理论的可积性,系统地去除非对合约束,并推导出运动方程。这种方法有效地展示了Hamilton-Jacobi方法处理复杂约束结构的能力。此外,我们的研究还包括对标准系统的分析,强调了汉密尔顿-雅可比形式主义的多功能性和广泛适用性。通过将我们的结果与Dirac-Bergmann和faddev - jackiw算法的结果进行比较,我们证明了Hamilton-Jacobi方法在数学运算方面更简单、更有效,并且在计算实现方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信