{"title":"Robust displacement sensing based on the resonance spectrum normalization using a bat-shaped SNAP microcavity","authors":"Jiebo Wang, Yongchao Dong, Yongkang Li, Shuai Zhang, Shihao Huang","doi":"10.1007/s00340-025-08402-5","DOIUrl":null,"url":null,"abstract":"<div><p>Surface nanoscale axial photonics (SNAP) microcavities exhibit a regular transmission spectrum and encompass multiple axial modes, making them highly relevant for precise and wide-range displacement sensing applications. However, conventional SNAP microcavity shapes, such as parabolic and Gaussian curves, demonstrate limitations in handling noise interference from external environments, compromising displacement sensing accuracy. In this study, we propose a robust displacement sensing approach based on the bat-shaped SNAP microcavity. This unique profile supports a uniform first-order axial field mode. By utilizing the first-order axial mode as a reference, we apply Resonance Spectra Normalization (RSN) to standardize the resonance spectrum, reducing the impact of external perturbations. Extensive simulations validate the effectiveness of this technique. When coupling parameters deviate by up to 8%, our sensing method achieves a prediction error confined within a 4 μm range, compared to 14 μm in conventional displacement sensing solutions. This advancement enhances the sensor’s immunity to environmental noise, potentially revolutionizing microcavity displacement sensing, particularly in challenging environments beyond controlled cleanrooms.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08402-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Surface nanoscale axial photonics (SNAP) microcavities exhibit a regular transmission spectrum and encompass multiple axial modes, making them highly relevant for precise and wide-range displacement sensing applications. However, conventional SNAP microcavity shapes, such as parabolic and Gaussian curves, demonstrate limitations in handling noise interference from external environments, compromising displacement sensing accuracy. In this study, we propose a robust displacement sensing approach based on the bat-shaped SNAP microcavity. This unique profile supports a uniform first-order axial field mode. By utilizing the first-order axial mode as a reference, we apply Resonance Spectra Normalization (RSN) to standardize the resonance spectrum, reducing the impact of external perturbations. Extensive simulations validate the effectiveness of this technique. When coupling parameters deviate by up to 8%, our sensing method achieves a prediction error confined within a 4 μm range, compared to 14 μm in conventional displacement sensing solutions. This advancement enhances the sensor’s immunity to environmental noise, potentially revolutionizing microcavity displacement sensing, particularly in challenging environments beyond controlled cleanrooms.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.