{"title":"Guidance and Control of Underwater Hexapod Robot Based on Adaptive Sliding Mode Strategy","authors":"Qingshuo Gong, Wei Zhang, Yu Su, Haoyu Yang","doi":"10.1007/s42235-024-00625-0","DOIUrl":null,"url":null,"abstract":"<div><p>Animals exhibit remarkable mobility and adaptability to their environments. Leveraging these advantages, various types of robots have been developed. To achieve path tracking control for the underwater hexapod robot, a path tracking control system has been designed. Within this system, a Line-of-Sight (LOS) guidance system is utilized to generate the desired heading angle during the path tracking process. A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method. Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller, which includes force/torque, and the input parameters of the Central Pattern Generator (CPG) network. Finally, the effectiveness of the proposed method is verified through simulation and experimentation. The results demonstrate that the robot exhibits good tracking accuracy, as well as stability and coordination in motion. The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 1","pages":"118 - 132"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00625-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Animals exhibit remarkable mobility and adaptability to their environments. Leveraging these advantages, various types of robots have been developed. To achieve path tracking control for the underwater hexapod robot, a path tracking control system has been designed. Within this system, a Line-of-Sight (LOS) guidance system is utilized to generate the desired heading angle during the path tracking process. A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method. Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller, which includes force/torque, and the input parameters of the Central Pattern Generator (CPG) network. Finally, the effectiveness of the proposed method is verified through simulation and experimentation. The results demonstrate that the robot exhibits good tracking accuracy, as well as stability and coordination in motion. The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.