{"title":"Cross-diffusion-induced instabilities in a cooperative hunting population with Allee effect","authors":"Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty","doi":"10.1140/epjp/s13360-025-06017-5","DOIUrl":null,"url":null,"abstract":"<div><p>The spatiotemporal complexity of a system of interacting species, influenced by hunting cooperation and the additive Allee effect, has garnered significant attention within the ecological framework. This study investigates whether interactions among species can stabilize the dynamics of environmental communities and promote coexistence, employing a cross-diffusion-driven species interaction model. The local and global bifurcation behaviour of the proposed system and the stability of all potential equilibrium points in the absence of diffusion have been comprehensively examined. Numerical simulations have been conducted to validate the analytical findings and assess the applicability of the cross-diffusive model. In a two-dimensional plane, the evolution of diffusion-driven pattern generation, known as black-eye replication, around the coexistence equilibrium point has been presented. Furthermore, it has been demonstrated that species interactions within the context of cross-diffusion can exacerbate the instability dynamics of ecological populations by generating spatial patterns. The results underscore the crucial role of cross-diffusion-driven instability in maintaining ecosystem diversity and structure.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06017-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The spatiotemporal complexity of a system of interacting species, influenced by hunting cooperation and the additive Allee effect, has garnered significant attention within the ecological framework. This study investigates whether interactions among species can stabilize the dynamics of environmental communities and promote coexistence, employing a cross-diffusion-driven species interaction model. The local and global bifurcation behaviour of the proposed system and the stability of all potential equilibrium points in the absence of diffusion have been comprehensively examined. Numerical simulations have been conducted to validate the analytical findings and assess the applicability of the cross-diffusive model. In a two-dimensional plane, the evolution of diffusion-driven pattern generation, known as black-eye replication, around the coexistence equilibrium point has been presented. Furthermore, it has been demonstrated that species interactions within the context of cross-diffusion can exacerbate the instability dynamics of ecological populations by generating spatial patterns. The results underscore the crucial role of cross-diffusion-driven instability in maintaining ecosystem diversity and structure.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.