Glutathione-responsive FA-CMC-GNA nanoparticles: a novel approach for enhanced delivery of gambogenic acid in lung cancer treatment

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Xiaoling Xu, Lisha Ye, Chaohui Bao, Wen Hong, Kaiding Wang, Shicheng Qiu, Yaping Xu, Jigang Piao, Qinghua Yao
{"title":"Glutathione-responsive FA-CMC-GNA nanoparticles: a novel approach for enhanced delivery of gambogenic acid in lung cancer treatment","authors":"Xiaoling Xu,&nbsp;Lisha Ye,&nbsp;Chaohui Bao,&nbsp;Wen Hong,&nbsp;Kaiding Wang,&nbsp;Shicheng Qiu,&nbsp;Yaping Xu,&nbsp;Jigang Piao,&nbsp;Qinghua Yao","doi":"10.1007/s42114-024-01205-w","DOIUrl":null,"url":null,"abstract":"<div><p>One of the limitations of current anticancer nanomedicines in clinical applications is the efficiency of drug delivery in their nanocarrier systems. Therefore, we aimed to develop a nano-delivery system loaded with a hydrophobic drug for lung cancer treatment. Nanoparticles (FA-CMC-GNA NPs) were prepared using an emulsion solvent evaporation method, with a disulfide bond-crosslinked thiolated carboxymethyl cellulose as the backbone, encapsulating the hydrophobic drug gambogenic acid. The preparation process was optimized through single-factor experiments and response surface methodology to determine the optimal preparation conditions. The characterization of the physicochemical properties of FA-CMC-GNA NPs was conducted using various techniques, including scanning electron microscopy, dynamic light scattering, X-ray spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. The results showed that the nanoparticles exhibited uniform dispersion and spherical morphology with a particle size of approximately 193.3 nm. Additionally, FA-CMC-GNA NPs demonstrated significant glutathione (GSH)-responsive release behavior <i>in vitro</i>. The prepared FA-CMC-GNA NPs were internalized into A549 cells via folate receptor-mediated endocytosis and released gambogenic acid in response to GSH, resulting in a significant inhibitory effect on A549 cells. In conclusion, these findings suggest that FA-CMC-GNA NPs hold the potential to enhance the clinical application value of the hydrophobic drug gambogenic acid for lung cancer therapy.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01205-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01205-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

One of the limitations of current anticancer nanomedicines in clinical applications is the efficiency of drug delivery in their nanocarrier systems. Therefore, we aimed to develop a nano-delivery system loaded with a hydrophobic drug for lung cancer treatment. Nanoparticles (FA-CMC-GNA NPs) were prepared using an emulsion solvent evaporation method, with a disulfide bond-crosslinked thiolated carboxymethyl cellulose as the backbone, encapsulating the hydrophobic drug gambogenic acid. The preparation process was optimized through single-factor experiments and response surface methodology to determine the optimal preparation conditions. The characterization of the physicochemical properties of FA-CMC-GNA NPs was conducted using various techniques, including scanning electron microscopy, dynamic light scattering, X-ray spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. The results showed that the nanoparticles exhibited uniform dispersion and spherical morphology with a particle size of approximately 193.3 nm. Additionally, FA-CMC-GNA NPs demonstrated significant glutathione (GSH)-responsive release behavior in vitro. The prepared FA-CMC-GNA NPs were internalized into A549 cells via folate receptor-mediated endocytosis and released gambogenic acid in response to GSH, resulting in a significant inhibitory effect on A549 cells. In conclusion, these findings suggest that FA-CMC-GNA NPs hold the potential to enhance the clinical application value of the hydrophobic drug gambogenic acid for lung cancer therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信