Synergistic effects of liquid phase exfoliated molybdenum based 2D nanosheets and MWCNTs for high performance supercapacitors†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Riya Malik, Ankur Rana, Megha Rana, Dilip K. Singh, R. Srivastava and C. K. Suman
{"title":"Synergistic effects of liquid phase exfoliated molybdenum based 2D nanosheets and MWCNTs for high performance supercapacitors†","authors":"Riya Malik, Ankur Rana, Megha Rana, Dilip K. Singh, R. Srivastava and C. K. Suman","doi":"10.1039/D4SE00964A","DOIUrl":null,"url":null,"abstract":"<p >This work investigates the application of liquid phase exfoliated Mo-based transition metal dichalcogenide (TMDC) two-dimensional (2D) nanosheets integrated with multi-walled carbon nanotubes (MWCNTs) as a novel electrode material for high-performance supercapacitors. The structural, functional, and morphological analyses were performed by XRD, FESEM, XPS, and Raman spectroscopy, which augmented the successful formation of TMDC nanosheets and their nanocomposites with MWCNTs. Structural and morphological characterization studies revealed the successful synthesis of the 2D nanosheets and their intimate integration with the MWCNTs, forming a porous network. Raman spectra confirmed the presence of vibrational bands for TMDC nanosheets (A<small><sub>1g</sub></small> and E<small><sub>2g</sub></small>) and their nanocomposites with MWCNTs (D and G bands). The optical characterisation studies (UV and PL) confirmed the exfoliation of TMDC nanosheets with band gaps of 1.87 eV and 1.67 eV for MoS<small><sub>2</sub></small> and MoSe<small><sub>2</sub></small>, respectively. From the electrochemical characterisation studies, the values of specific capacitance were found to be 3338.29 F g<small><sup>−1</sup></small> and 2776.59 F g<small><sup>−1</sup></small> for MoS<small><sub>2</sub></small>/MWCNT and MoSe<small><sub>2</sub></small>/MWCNT electrodes with energy densities of 102.42 W h kg<small><sup>−1</sup></small> and 85.18 W h kg<small><sup>−1</sup></small>, respectively. These nanocomposites retained 84% of the initial specific capacitance over 4000 repeated charge/discharge cycles. These nanocomposites may be used as potential materials for the fabrication of next generation devices for energy storage.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 3","pages":" 750-764"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se00964a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the application of liquid phase exfoliated Mo-based transition metal dichalcogenide (TMDC) two-dimensional (2D) nanosheets integrated with multi-walled carbon nanotubes (MWCNTs) as a novel electrode material for high-performance supercapacitors. The structural, functional, and morphological analyses were performed by XRD, FESEM, XPS, and Raman spectroscopy, which augmented the successful formation of TMDC nanosheets and their nanocomposites with MWCNTs. Structural and morphological characterization studies revealed the successful synthesis of the 2D nanosheets and their intimate integration with the MWCNTs, forming a porous network. Raman spectra confirmed the presence of vibrational bands for TMDC nanosheets (A1g and E2g) and their nanocomposites with MWCNTs (D and G bands). The optical characterisation studies (UV and PL) confirmed the exfoliation of TMDC nanosheets with band gaps of 1.87 eV and 1.67 eV for MoS2 and MoSe2, respectively. From the electrochemical characterisation studies, the values of specific capacitance were found to be 3338.29 F g−1 and 2776.59 F g−1 for MoS2/MWCNT and MoSe2/MWCNT electrodes with energy densities of 102.42 W h kg−1 and 85.18 W h kg−1, respectively. These nanocomposites retained 84% of the initial specific capacitance over 4000 repeated charge/discharge cycles. These nanocomposites may be used as potential materials for the fabrication of next generation devices for energy storage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信