Photocatalytic Performance of Spinel Ferrites and their Carbon-Based Composites for Environmental Pollutant Degradation

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Jashwini Asokan, Padmapriya Kumar, Guhan Arjunan, M. Govindaraj Shalini
{"title":"Photocatalytic Performance of Spinel Ferrites and their Carbon-Based Composites for Environmental Pollutant Degradation","authors":"Jashwini Asokan,&nbsp;Padmapriya Kumar,&nbsp;Guhan Arjunan,&nbsp;M. Govindaraj Shalini","doi":"10.1007/s10876-024-02754-2","DOIUrl":null,"url":null,"abstract":"<div><p>Spinel ferrites are magnetic materials that possess excellent magnetic properties, high surface area, high chemical stability, and tuneable characteristics, making them ideal for water purification. Owing to their multifunctionality and magnetic separation capability, these materials offer high adsorption efficiencies and rapid kinetics for removing pollutants such as metal ions, dyes, and pharmaceuticals. Additionally, spinel ferrites and their nanocomposites, particularly those combined with carbon materials, show strong photocatalytic activity in degrading contaminants. These materials generate active radicals under visible and UV light, offering a low-cost, efficient solution for water treatment. While promising, further studies are needed to advance their practical application in water treatment plants. Despite their potential, a complete understanding of the degradation mechanisms and adsorption processes concerning emerging pollutants such as dyes, pharmaceuticals and microplastics, remains incomplete. This review critically examines factors influencing the performance of spinel ferrites, including particle size, shape, substitution, and functionalization, to provide insights into their molecular-level interactions with pollutants. It analyses how synthesis methods and material modifications, such as carbon coatings and substitutions, enhance photocatalytic degradation efficiency. Additionally, the review addresses magnetic separation techniques, durability over multiple cycles, and regeneration and reusability capabilities. By consolidating current knowledge and identifying research gaps, this comprehensive analysis aims to guide the future development of spinel ferrite-based purification technologies.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02754-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Spinel ferrites are magnetic materials that possess excellent magnetic properties, high surface area, high chemical stability, and tuneable characteristics, making them ideal for water purification. Owing to their multifunctionality and magnetic separation capability, these materials offer high adsorption efficiencies and rapid kinetics for removing pollutants such as metal ions, dyes, and pharmaceuticals. Additionally, spinel ferrites and their nanocomposites, particularly those combined with carbon materials, show strong photocatalytic activity in degrading contaminants. These materials generate active radicals under visible and UV light, offering a low-cost, efficient solution for water treatment. While promising, further studies are needed to advance their practical application in water treatment plants. Despite their potential, a complete understanding of the degradation mechanisms and adsorption processes concerning emerging pollutants such as dyes, pharmaceuticals and microplastics, remains incomplete. This review critically examines factors influencing the performance of spinel ferrites, including particle size, shape, substitution, and functionalization, to provide insights into their molecular-level interactions with pollutants. It analyses how synthesis methods and material modifications, such as carbon coatings and substitutions, enhance photocatalytic degradation efficiency. Additionally, the review addresses magnetic separation techniques, durability over multiple cycles, and regeneration and reusability capabilities. By consolidating current knowledge and identifying research gaps, this comprehensive analysis aims to guide the future development of spinel ferrite-based purification technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信