Harnessing Oregano Nanoemulsion: A Novel Solution to Combat Curvalaria-Induced Fruit Rot and Preserve Mango Quality

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
M. J. Gidado, Ahmad Anas Nagoor Gunny, Nor Amirah Azwa Norizal, Subash C. B. Gopinath, Chalermchai Wongs-Aree, Muaz Mohd Zaini Makhtar, Raja Hasnida Binti Raja Hashim, Mohd Hishamuddin Che Mat
{"title":"Harnessing Oregano Nanoemulsion: A Novel Solution to Combat Curvalaria-Induced Fruit Rot and Preserve Mango Quality","authors":"M. J. Gidado,&nbsp;Ahmad Anas Nagoor Gunny,&nbsp;Nor Amirah Azwa Norizal,&nbsp;Subash C. B. Gopinath,&nbsp;Chalermchai Wongs-Aree,&nbsp;Muaz Mohd Zaini Makhtar,&nbsp;Raja Hasnida Binti Raja Hashim,&nbsp;Mohd Hishamuddin Che Mat","doi":"10.1007/s10876-024-02762-2","DOIUrl":null,"url":null,"abstract":"<div><p>Mango is a significant global fruit crop, producing over 1,000 million tonnes annually. However, postharvest losses due to pathogenic fungal infections are considerable, exacerbated by the continuous use of synthetic fungicides, which pose risks of fungal resistance and environmental harm. This study assessed the effectiveness of <i>Origanum vulgare</i>-based nanoemulsion against mango postharvest diseases and quality preservation. Results indicate that the <i>O. vulgare</i> nanoemulsion (Ore-S1-15) exhibited optimal properties, including small droplet size, low polydispersity, and stable pH. FTIR analysis identified key functional groups, while GC-MS results revealed prominent components with isopropyl myristate being the major constituent at 42.41%, followed by isopropyl palmitate (25.53%), oleic acid (4.57%), diethyl phthalate (3.84%), estagole (2.09%), 2-(phenylmethylene)-octanal (1.17%), cyclopentane acetic acid (0.85%), benzoic acid (0.34%), and coumarin (0.26%) as minor constituents. <i>In vitro</i> test of the Ore-S1-15 nanoemulsion against <i>Curvularia</i> sp. demonstrated significant antifungal activity, with 79.51 ± 0.95% conidia inhibition. Additionally, <i>in vivo</i> test showed a reduction in disease incidence on wounded mangoes. The Ore-S1-15 nanoemulsion enhanced quality parameters by delaying colour changes, reducing weight loss and steadily maintaining the total soluble solids. Thus, Ore-S1-15 nanoemulsion emerges as a promising and eco-friendly alternative to synthetic fungicides for controlling mango postharvest diseases and increasing shelf life while preserving quality.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02762-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Mango is a significant global fruit crop, producing over 1,000 million tonnes annually. However, postharvest losses due to pathogenic fungal infections are considerable, exacerbated by the continuous use of synthetic fungicides, which pose risks of fungal resistance and environmental harm. This study assessed the effectiveness of Origanum vulgare-based nanoemulsion against mango postharvest diseases and quality preservation. Results indicate that the O. vulgare nanoemulsion (Ore-S1-15) exhibited optimal properties, including small droplet size, low polydispersity, and stable pH. FTIR analysis identified key functional groups, while GC-MS results revealed prominent components with isopropyl myristate being the major constituent at 42.41%, followed by isopropyl palmitate (25.53%), oleic acid (4.57%), diethyl phthalate (3.84%), estagole (2.09%), 2-(phenylmethylene)-octanal (1.17%), cyclopentane acetic acid (0.85%), benzoic acid (0.34%), and coumarin (0.26%) as minor constituents. In vitro test of the Ore-S1-15 nanoemulsion against Curvularia sp. demonstrated significant antifungal activity, with 79.51 ± 0.95% conidia inhibition. Additionally, in vivo test showed a reduction in disease incidence on wounded mangoes. The Ore-S1-15 nanoemulsion enhanced quality parameters by delaying colour changes, reducing weight loss and steadily maintaining the total soluble solids. Thus, Ore-S1-15 nanoemulsion emerges as a promising and eco-friendly alternative to synthetic fungicides for controlling mango postharvest diseases and increasing shelf life while preserving quality.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信