Electronic metal–support interaction in Pd/CoNi-hydroxides with enhanced CO adsorption for boosting CO2 methanation†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yawei Wu, Dinesh Bhalothia, Jyh-Pin Chou, Guo-Wei Lee, Alice Hu and Tsan-Yao Chen
{"title":"Electronic metal–support interaction in Pd/CoNi-hydroxides with enhanced CO adsorption for boosting CO2 methanation†","authors":"Yawei Wu, Dinesh Bhalothia, Jyh-Pin Chou, Guo-Wei Lee, Alice Hu and Tsan-Yao Chen","doi":"10.1039/D4SE01565G","DOIUrl":null,"url":null,"abstract":"<p >CO<small><sub>2</sub></small> conversion to value-added chemical products is of significance for carbon cycling. Pd-based catalysts show great potential in the CO<small><sub>2</sub></small> methanation reaction by virtue of the synergistic effect between the Pd and support, but the limited interaction sites on the support often restrict further optimization of the Pd electronic state. Herein, CoNi-hydroxide nanosheets with abundant defects were synthesized and provided numerous interaction sites for loading Pd nanoparticles, leading to enriched electron density of Pd sites with strong CO adsorption intensity. TEM and XRD revealed the solid solution structure of CoNi-hydroxide nanosheets with lattice distortions, which provided numerous defects for interaction sites. The close interface served as an electron transfer pathway from Co to Pd sites, as confirmed by XAS analysis. Meanwhile, the electron-rich Pd sites exhibited stronger CO intermediate adsorption strength. As a result, a good CH<small><sub>4</sub></small> production rate of 2255 μmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> at 573 K was obtained over CoNi-hydroxides decorated with Pd, which was 64 times greater than that of Pd/AC and twice that of the pristine CoNi-hydroxide catalyst.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 3","pages":" 847-854"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01565g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 conversion to value-added chemical products is of significance for carbon cycling. Pd-based catalysts show great potential in the CO2 methanation reaction by virtue of the synergistic effect between the Pd and support, but the limited interaction sites on the support often restrict further optimization of the Pd electronic state. Herein, CoNi-hydroxide nanosheets with abundant defects were synthesized and provided numerous interaction sites for loading Pd nanoparticles, leading to enriched electron density of Pd sites with strong CO adsorption intensity. TEM and XRD revealed the solid solution structure of CoNi-hydroxide nanosheets with lattice distortions, which provided numerous defects for interaction sites. The close interface served as an electron transfer pathway from Co to Pd sites, as confirmed by XAS analysis. Meanwhile, the electron-rich Pd sites exhibited stronger CO intermediate adsorption strength. As a result, a good CH4 production rate of 2255 μmol gcat−1 h−1 at 573 K was obtained over CoNi-hydroxides decorated with Pd, which was 64 times greater than that of Pd/AC and twice that of the pristine CoNi-hydroxide catalyst.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信