Photocurable epoxy-based composite for rapid orthopedic soft casting†

Beatrice Tosetto, Roberto Mo, Candido Fabrizio Pirri and Ignazio Roppolo
{"title":"Photocurable epoxy-based composite for rapid orthopedic soft casting†","authors":"Beatrice Tosetto, Roberto Mo, Candido Fabrizio Pirri and Ignazio Roppolo","doi":"10.1039/D4LP00248B","DOIUrl":null,"url":null,"abstract":"<p >Since the last century, plaster of Paris bandages have been the gold standard for orthopedic casting. Despite their extensive use, they have several drawbacks in day-to-day life, such as high weight and sensitivity to water. Moreover, they can cause skin burns, pressure sores, and other complications. Consequently, the urgency to propose alternative materials to solve these problems has emerged in the last decades, leading to the so-called soft casts, especially in pediatric orthopedics. In this context, a photocurable composite, based on the impregnation of a medical net with epoxy resins, is presented here. The impregnated medical net was rapidly transformed into a rigid device by means of visible light irradiation with an ad-hoc designed LED lamp (410–420 nm). Reaction activation was shifted to the visible range by exploiting isopropyl-9<em>H</em>-thioxanthen-9-one (ITX) as the photosensitizer, and the composites’ polymerization was evaluated <em>via</em> FT-IR analyses and thermal camera monitoring. The composites were also tested through tensile and three-point bending tests, revealing a stiffness comparable to that of soft casts already on the market. Compared to commercially available photocurable casts, this work introduces two key innovations: first, the employment of commercially available epoxy resins (monomer: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate), which enables avoiding the problems of oxygen inhibition; second, the use of a tubular medical net that is stretchable along the transversal direction, which is already used in the medical field for medication positioning. This latter advancement simplifies the application process compared to conventional techniques, making the obtained casts easy and fast to apply, light and breathable, thus maintaining promising properties for orthopedic rapid soft casts.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 1","pages":" 268-277"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00248b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00248b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since the last century, plaster of Paris bandages have been the gold standard for orthopedic casting. Despite their extensive use, they have several drawbacks in day-to-day life, such as high weight and sensitivity to water. Moreover, they can cause skin burns, pressure sores, and other complications. Consequently, the urgency to propose alternative materials to solve these problems has emerged in the last decades, leading to the so-called soft casts, especially in pediatric orthopedics. In this context, a photocurable composite, based on the impregnation of a medical net with epoxy resins, is presented here. The impregnated medical net was rapidly transformed into a rigid device by means of visible light irradiation with an ad-hoc designed LED lamp (410–420 nm). Reaction activation was shifted to the visible range by exploiting isopropyl-9H-thioxanthen-9-one (ITX) as the photosensitizer, and the composites’ polymerization was evaluated via FT-IR analyses and thermal camera monitoring. The composites were also tested through tensile and three-point bending tests, revealing a stiffness comparable to that of soft casts already on the market. Compared to commercially available photocurable casts, this work introduces two key innovations: first, the employment of commercially available epoxy resins (monomer: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate), which enables avoiding the problems of oxygen inhibition; second, the use of a tubular medical net that is stretchable along the transversal direction, which is already used in the medical field for medication positioning. This latter advancement simplifies the application process compared to conventional techniques, making the obtained casts easy and fast to apply, light and breathable, thus maintaining promising properties for orthopedic rapid soft casts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信