Impact of adsorption kinetics on the integration of temperature vacuum swing adsorption-based direct air capture (TVSA-DAC) with e-methanol production†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Sebastian Bruhn Petersen, Eliana Maria Lozano Sánchez and Thomas Helmer Pedersen
{"title":"Impact of adsorption kinetics on the integration of temperature vacuum swing adsorption-based direct air capture (TVSA-DAC) with e-methanol production†","authors":"Sebastian Bruhn Petersen, Eliana Maria Lozano Sánchez and Thomas Helmer Pedersen","doi":"10.1039/D4SE01395F","DOIUrl":null,"url":null,"abstract":"<p >Understanding the integration potential of direct air capture (DAC) with carbon utilisation processes can help pave the way for DAC to become an essential part of the solution towards carbon neutrality. In this study, we provide a detailed technical assessment of an integrated system using direct air capture based on temperature-vacuum-swing-adsorption (TVSA-DAC) as the carbon source for e-methanol production. The integration potential is evaluated in terms of technical compatibility, heat integration, water management, and overall energy efficiency. A specific focus is given to the TVSA-DAC process considering the uncertainty of the available adsorption mass transfer kinetics. It is found that the CO<small><sub>2</sub></small>-productivity ranges from 0.23–13.35 kg<small><sub>CO<small><sub>2</sub></small></sub></small> m<small><sup>−3</sup></small> h<small><sup>−1</sup></small> given an interval for the CO<small><sub>2</sub></small> mass transfer coefficient of 0.0001–0.1 s<small><sup>−1</sup></small> in which the highest productivity is obtained using a steam sweep during desorption. The potential to achieve a steady CO<small><sub>2</sub></small> output from the TVSA-DAC is proven; however, the complexity of the integrated design configuration depends greatly on the adsorption kinetics. Generally, a well-aligned heat integration with no external heat demand for the combined system can be achieved using high-temperature heat pumps to facilitate favourable heat recovery from the electrolysis. Furthermore, the integrated system can be water self-sufficient and even net producing at a relative humidity above 50% due to the co-capture of water in the TVSA-DAC process. The overall energy efficiency can reach up to 52% for the integrated system.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 3","pages":" 879-890"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01395f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the integration potential of direct air capture (DAC) with carbon utilisation processes can help pave the way for DAC to become an essential part of the solution towards carbon neutrality. In this study, we provide a detailed technical assessment of an integrated system using direct air capture based on temperature-vacuum-swing-adsorption (TVSA-DAC) as the carbon source for e-methanol production. The integration potential is evaluated in terms of technical compatibility, heat integration, water management, and overall energy efficiency. A specific focus is given to the TVSA-DAC process considering the uncertainty of the available adsorption mass transfer kinetics. It is found that the CO2-productivity ranges from 0.23–13.35 kgCO2 m−3 h−1 given an interval for the CO2 mass transfer coefficient of 0.0001–0.1 s−1 in which the highest productivity is obtained using a steam sweep during desorption. The potential to achieve a steady CO2 output from the TVSA-DAC is proven; however, the complexity of the integrated design configuration depends greatly on the adsorption kinetics. Generally, a well-aligned heat integration with no external heat demand for the combined system can be achieved using high-temperature heat pumps to facilitate favourable heat recovery from the electrolysis. Furthermore, the integrated system can be water self-sufficient and even net producing at a relative humidity above 50% due to the co-capture of water in the TVSA-DAC process. The overall energy efficiency can reach up to 52% for the integrated system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信