Xuehan Zhang, Wenzhuang Wang, Wenling Xu, Qinghua Chuai, Yongming Bao and Feng Guo
{"title":"Construction of a BiOI/g-C3N4 heterojunction photocatalyst: visible light-mediated efficient and selective oxidation of 5-hydroxymethylfurfural†","authors":"Xuehan Zhang, Wenzhuang Wang, Wenling Xu, Qinghua Chuai, Yongming Bao and Feng Guo","doi":"10.1039/D4NJ04937C","DOIUrl":null,"url":null,"abstract":"<p >The escalating demand for sustainable energy has intensified the search for photocatalysts capable of harnessing solar energy for chemical conversions, with a particular focus on non-noble metal catalysts. This study presents the synthesis of a novel BiOI/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> heterojunction photocatalyst <em>via</em> an ultrasound-assisted co-precipitation method, demonstrating its efficiency in the visible light-mediated oxidation of 5-hydroxymethylfurfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). The innovative synthesis approach ensures a well-crystallized and uniformly dispersed composite, critical for optimizing photocatalytic performance. By meticulously adjusting the composite ratio, this study fine-tunes the electronic structure and optoelectronic properties, enhancing light absorption and charge carrier dynamics. The BiOI/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> photocatalyst achieved a maximum HMFCA yield of 43.6% and selectivity of 68.1% under visible light irradiation, showcasing its potential for sunlight-driven biomass conversion. Moreover, the catalyst exhibited excellent stability and reusability, retaining performance after five recycling cycles with only a 6.6% decrease in HMFCA yield. This work not only advances the understanding of non-noble metal photocatalysts for sustainable biomass conversion but also aligns with the principles of green chemistry by employing a renewable resource-based approach and minimizing environmental impact.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 5","pages":" 1607-1618"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04937c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating demand for sustainable energy has intensified the search for photocatalysts capable of harnessing solar energy for chemical conversions, with a particular focus on non-noble metal catalysts. This study presents the synthesis of a novel BiOI/g-C3N4 heterojunction photocatalyst via an ultrasound-assisted co-precipitation method, demonstrating its efficiency in the visible light-mediated oxidation of 5-hydroxymethylfurfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). The innovative synthesis approach ensures a well-crystallized and uniformly dispersed composite, critical for optimizing photocatalytic performance. By meticulously adjusting the composite ratio, this study fine-tunes the electronic structure and optoelectronic properties, enhancing light absorption and charge carrier dynamics. The BiOI/g-C3N4 photocatalyst achieved a maximum HMFCA yield of 43.6% and selectivity of 68.1% under visible light irradiation, showcasing its potential for sunlight-driven biomass conversion. Moreover, the catalyst exhibited excellent stability and reusability, retaining performance after five recycling cycles with only a 6.6% decrease in HMFCA yield. This work not only advances the understanding of non-noble metal photocatalysts for sustainable biomass conversion but also aligns with the principles of green chemistry by employing a renewable resource-based approach and minimizing environmental impact.