Terpenes, natural dyes and photochemistry: toward the synthesis of photoactive bio-based materials with biocide properties†

Louise Breloy, Christine Elian, Vanessa Alphonse, Sonia Lajnef, Fabienne Peyrot, Denis Jacquemin, Simon Pascal, Enguerran Devernois, Thibaud Coradin, Samir Abbad Andaloussi and Davy-Louis Versace
{"title":"Terpenes, natural dyes and photochemistry: toward the synthesis of photoactive bio-based materials with biocide properties†","authors":"Louise Breloy, Christine Elian, Vanessa Alphonse, Sonia Lajnef, Fabienne Peyrot, Denis Jacquemin, Simon Pascal, Enguerran Devernois, Thibaud Coradin, Samir Abbad Andaloussi and Davy-Louis Versace","doi":"10.1039/D4LP00271G","DOIUrl":null,"url":null,"abstract":"<p >Combining bioresources and photo-induced polymerization is a promising way to design sustainable and high-performing antibacterial materials. In this study, we propose a green synthesis of bio-based materials with dual antibacterial properties by photopolymerization. Two new methacrylate-based hydroxyanthraquinones derived from purpurin and alizarin (P-3Ac and Al-2Ac) have been designed to promote the polymerization of bio-based vegetable oil and terpene blend mixtures under visible-light irradiation up to 470 nm. All the photochemical mechanisms involved in the photopolymerization processes have been described by steady state photolysis, electron spin resonance spin-trapping (ESR ST) and real-time Fourier transform infrared (RT-FTIR) spectroscopy. Interestingly, the photo-initiating properties of P-3Ac and Al-2Ac are greatly enhanced in comparison with the native unmodified purpurin and alizarin. Polymerization of soybean oil acrylate and linalool through a thiol–ene process has led to the formation of photoactive bio-based materials able to generate biocide reactive oxygen species (ROS) upon light exposure which can also be used as contact-killing materials for tremendous inhibition of bacterial growth. The respective effects of each biocide agent (ROS and linalool) were compared and combined, highlighting stunning inhibition properties of the materials (higher than 99.99%) against both <em>E. coli</em> (Gram negative) and <em>S. aureus</em> (Gram positive), even after a second antibacterial recycling test. Prior to photo-printing experiments, rheological studies have been performed to design greener 3D-photoinduced materials. According to the high bio-renewable carbon contents of the photosensitive P-3Ac-based formulation and its great processability, 3D objects have been designed using Digital Light Processing (DLP) technology upon 405 nm light emitting diode exposure.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 1","pages":" 222-237"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00271g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00271g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combining bioresources and photo-induced polymerization is a promising way to design sustainable and high-performing antibacterial materials. In this study, we propose a green synthesis of bio-based materials with dual antibacterial properties by photopolymerization. Two new methacrylate-based hydroxyanthraquinones derived from purpurin and alizarin (P-3Ac and Al-2Ac) have been designed to promote the polymerization of bio-based vegetable oil and terpene blend mixtures under visible-light irradiation up to 470 nm. All the photochemical mechanisms involved in the photopolymerization processes have been described by steady state photolysis, electron spin resonance spin-trapping (ESR ST) and real-time Fourier transform infrared (RT-FTIR) spectroscopy. Interestingly, the photo-initiating properties of P-3Ac and Al-2Ac are greatly enhanced in comparison with the native unmodified purpurin and alizarin. Polymerization of soybean oil acrylate and linalool through a thiol–ene process has led to the formation of photoactive bio-based materials able to generate biocide reactive oxygen species (ROS) upon light exposure which can also be used as contact-killing materials for tremendous inhibition of bacterial growth. The respective effects of each biocide agent (ROS and linalool) were compared and combined, highlighting stunning inhibition properties of the materials (higher than 99.99%) against both E. coli (Gram negative) and S. aureus (Gram positive), even after a second antibacterial recycling test. Prior to photo-printing experiments, rheological studies have been performed to design greener 3D-photoinduced materials. According to the high bio-renewable carbon contents of the photosensitive P-3Ac-based formulation and its great processability, 3D objects have been designed using Digital Light Processing (DLP) technology upon 405 nm light emitting diode exposure.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信