Copper–tin bimetallic aerogel alloy for the electroreduction of CO2 to formate†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Baibin Ren, Jing Shao, Hongji Li and Qingming Xu
{"title":"Copper–tin bimetallic aerogel alloy for the electroreduction of CO2 to formate†","authors":"Baibin Ren, Jing Shao, Hongji Li and Qingming Xu","doi":"10.1039/D4NJ04703F","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical reduction of CO<small><sub>2</sub></small> (CO<small><sub>2</sub></small>RR) enables the conversion of CO<small><sub>2</sub></small> into various value-added hydrocarbons, with formate garnering significant interest due to its high energy density and efficient conversion potential. Although tin (Sn)-based catalysts generally exhibit high selectivity for formate and effectively suppress the hydrogen evolution reaction (HER), the simultaneous presence of low selectivity and current density limits further applications. In this work, a series of bimetallic Cu–Sn aerogel catalysts were synthesized; the Cu–Sn (1 : 1) aerogel catalyst demonstrated superior CO<small><sub>2</sub></small> reduction performance, with higher cathodic reaction activity (35.61 mA cm<small><sup>−2</sup></small>) and a formate faradaic efficiency (FE) exceeding 90%, while maintaining stable CO<small><sub>2</sub></small> selectivity over a period of 7 hours. The high efficiency in generating formate is attributed to the high surface area provided by the bimetallic aerogel, which facilitates CO<small><sub>2</sub></small> transport and product desorption. Additionally, the high-energy interfaces formed during alloying and electronic synergistic effects increase the charge density at active sites. The self-supporting structure further optimizes electron transfer performance. This study provides new insights into the development of bimetallic catalysts for efficiently reducing CO<small><sub>2</sub></small> to formate.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 6","pages":" 2201-2208"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04703f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction of CO2 (CO2RR) enables the conversion of CO2 into various value-added hydrocarbons, with formate garnering significant interest due to its high energy density and efficient conversion potential. Although tin (Sn)-based catalysts generally exhibit high selectivity for formate and effectively suppress the hydrogen evolution reaction (HER), the simultaneous presence of low selectivity and current density limits further applications. In this work, a series of bimetallic Cu–Sn aerogel catalysts were synthesized; the Cu–Sn (1 : 1) aerogel catalyst demonstrated superior CO2 reduction performance, with higher cathodic reaction activity (35.61 mA cm−2) and a formate faradaic efficiency (FE) exceeding 90%, while maintaining stable CO2 selectivity over a period of 7 hours. The high efficiency in generating formate is attributed to the high surface area provided by the bimetallic aerogel, which facilitates CO2 transport and product desorption. Additionally, the high-energy interfaces formed during alloying and electronic synergistic effects increase the charge density at active sites. The self-supporting structure further optimizes electron transfer performance. This study provides new insights into the development of bimetallic catalysts for efficiently reducing CO2 to formate.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信