Regioisomeric manipulation of AIE-active photosensitizers towards multidrug-resistant bacterial eradication†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Meiliang Zhi, Tun Sun, Deliang Wang, Qiying Zeng, Ying Li, Xiang Su, Xing Feng and Ben Zhong Tang
{"title":"Regioisomeric manipulation of AIE-active photosensitizers towards multidrug-resistant bacterial eradication†","authors":"Meiliang Zhi, Tun Sun, Deliang Wang, Qiying Zeng, Ying Li, Xiang Su, Xing Feng and Ben Zhong Tang","doi":"10.1039/D4QM00908H","DOIUrl":null,"url":null,"abstract":"<p >Multidrug-resistant (MDR) bacterial infection is currently one of the pressing threats to human health globally. Photodynamic therapy (PDT) based on AIE-active photosensitizers (PSs) has garnered significant attention as a competitive and promising alternative for microbial elimination because of its noninvasiveness, photoswitchable controllability, and minimal drug resistance. The existing molecular engineering strategies prevailingly focus on the tuning of donor/π bridges and/or peripheral rotors. However, the regional tuning of a positively charged center, as a critical point of photosensitizers (PSs), is of great meaning but still remains rarely reported. Herein, we tactfully developed two benzoquinolizinium-based regioisomeric PSs, <strong>TPA-BQZ-1</strong> and <strong>TPA-BQZ-2</strong>, with differently located positive charge centers. The targeted regioisomers could be obtained through a one-step facile strategy with superior step- and atom-economy, in contrast to the widely developed linear-shaped D–π–A type antibacterial PSs, which require stepwise sequential binding of different functional segments <em>via</em> multi-step coupling reactions. The distinctive molecular structures endowed <strong>TPA-BQZ-1</strong> and <strong>TPA-BQZ-2</strong> with typical AIE features and high-efficiency ROS output ability by both type I and type II pathways. Both regioisomeric PSs could achieve effective MDR bacterial eradication yet dominated by different pathways, highlighting the critical role of the positively charged position in antibacterial PSs. By comparison, the antibacterial performance of <strong>TPA-BQZ-1</strong> is dominated by phototoxicity. Conversely, the intrinsic dark toxicity of <strong>TPA-BQZ-2</strong> exerted a great influence on the antibacterial efficiency, maybe stemming from the strong membrane interaction and the resulting membrane permeability. This study demonstrates an ingenious regioisomeric engineering strategy and offers useful guidance for the development of advanced antibacterial agents.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 3","pages":" 496-506"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00908h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multidrug-resistant (MDR) bacterial infection is currently one of the pressing threats to human health globally. Photodynamic therapy (PDT) based on AIE-active photosensitizers (PSs) has garnered significant attention as a competitive and promising alternative for microbial elimination because of its noninvasiveness, photoswitchable controllability, and minimal drug resistance. The existing molecular engineering strategies prevailingly focus on the tuning of donor/π bridges and/or peripheral rotors. However, the regional tuning of a positively charged center, as a critical point of photosensitizers (PSs), is of great meaning but still remains rarely reported. Herein, we tactfully developed two benzoquinolizinium-based regioisomeric PSs, TPA-BQZ-1 and TPA-BQZ-2, with differently located positive charge centers. The targeted regioisomers could be obtained through a one-step facile strategy with superior step- and atom-economy, in contrast to the widely developed linear-shaped D–π–A type antibacterial PSs, which require stepwise sequential binding of different functional segments via multi-step coupling reactions. The distinctive molecular structures endowed TPA-BQZ-1 and TPA-BQZ-2 with typical AIE features and high-efficiency ROS output ability by both type I and type II pathways. Both regioisomeric PSs could achieve effective MDR bacterial eradication yet dominated by different pathways, highlighting the critical role of the positively charged position in antibacterial PSs. By comparison, the antibacterial performance of TPA-BQZ-1 is dominated by phototoxicity. Conversely, the intrinsic dark toxicity of TPA-BQZ-2 exerted a great influence on the antibacterial efficiency, maybe stemming from the strong membrane interaction and the resulting membrane permeability. This study demonstrates an ingenious regioisomeric engineering strategy and offers useful guidance for the development of advanced antibacterial agents.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信