Facile tailoring of a multi-element nanocomposite for electrocatalysis†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohamed Okasha and Vivek Maheshwari
{"title":"Facile tailoring of a multi-element nanocomposite for electrocatalysis†","authors":"Mohamed Okasha and Vivek Maheshwari","doi":"10.1039/D4MA01262C","DOIUrl":null,"url":null,"abstract":"<p >Multielement combinations either as high entropy alloys or as nanocomposites are highly effective electrocatalysts for key reactions such as the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Both these reactions are crucial for generation of green hydrogen from water splitting. In this work we demonstrate the concept of using an electrical double layer to modulate the formation of these multielement catalysts. A one-pot, room temperature synthesis method is used to prepare dual functional HER and OER catalysts. The nanocomposite catalyst (NAC) forms chain-like structures composed of Au nanoparticle (AuNP) cores with a shell structure of Pt, Ni, Cu, Co and V that form a combination of metallic and amorphous composite heterostructures on a nanoscale, tailored using the electrical double layer. The NAC achieves low HER and OER overpotentials in 0.1 M KOH with fast kinetics for both reactions.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 3","pages":" 945-953"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01262c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01262c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multielement combinations either as high entropy alloys or as nanocomposites are highly effective electrocatalysts for key reactions such as the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Both these reactions are crucial for generation of green hydrogen from water splitting. In this work we demonstrate the concept of using an electrical double layer to modulate the formation of these multielement catalysts. A one-pot, room temperature synthesis method is used to prepare dual functional HER and OER catalysts. The nanocomposite catalyst (NAC) forms chain-like structures composed of Au nanoparticle (AuNP) cores with a shell structure of Pt, Ni, Cu, Co and V that form a combination of metallic and amorphous composite heterostructures on a nanoscale, tailored using the electrical double layer. The NAC achieves low HER and OER overpotentials in 0.1 M KOH with fast kinetics for both reactions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信