Facile detection of microplastics from a variety of environmental samples with conjugated polymer nanoparticles†

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL
Angela Awada, Mark Potter, Julian Aherne, Sarah Lavoie-Bernstein, Miriam L. Diamond, Paul A. Helm, Liisa Jantunen, Brittany Welsh, Bulent Mutus and Simon Rondeau-Gagné
{"title":"Facile detection of microplastics from a variety of environmental samples with conjugated polymer nanoparticles†","authors":"Angela Awada, Mark Potter, Julian Aherne, Sarah Lavoie-Bernstein, Miriam L. Diamond, Paul A. Helm, Liisa Jantunen, Brittany Welsh, Bulent Mutus and Simon Rondeau-Gagné","doi":"10.1039/D4VA00239C","DOIUrl":null,"url":null,"abstract":"<p >Microplastic pollution constitutes a pressing global environmental issue impacting nearly every facet of human activity. This specific environmental challenge exerts profound yet still poorly understood influences on health, social dynamics, and industrial practices. A major obstacle for further investigation and mitigation of microplastics lies in their heterogeneity in size and composition. Additionally, the multitude of sources contributing to microplastic emissions further complicates their study. To enhance current detection and analytical methodologies for microplastics, this study exploits a novel approach for the easy and specific identification of microplastics within diverse environmental samples (including air, soil, lake water, rain, snow, and marine sediment) collected from various geographical locations across Canada. This method relies on fluorescent conjugated polymer nanoparticles that can be used to identify microplastics after minimal preparation. In all examined samples, originating from diverse sources and environments, microplastics were consistently present in the form of fragments and/or fibers, with polyethylene terephthalate (PET) emerging as the most abundant type, as confirmed <em>via</em> Raman spectroscopy either before or after labeling. This approach significantly streamlines the microplastic identification process, reducing the time needed for extraction and isolation. Our findings corroborate the efficacy of nanoparticle labeling for microplastic detection, offering promising avenues for their facile, specific, and reliable identification. Ultimately, this novel procedure holds potential to enhance remediation efforts targeting microplastics in the environment, thereby advancing our understanding of their global impact.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 2","pages":" 270-278"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00239c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/va/d4va00239c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastic pollution constitutes a pressing global environmental issue impacting nearly every facet of human activity. This specific environmental challenge exerts profound yet still poorly understood influences on health, social dynamics, and industrial practices. A major obstacle for further investigation and mitigation of microplastics lies in their heterogeneity in size and composition. Additionally, the multitude of sources contributing to microplastic emissions further complicates their study. To enhance current detection and analytical methodologies for microplastics, this study exploits a novel approach for the easy and specific identification of microplastics within diverse environmental samples (including air, soil, lake water, rain, snow, and marine sediment) collected from various geographical locations across Canada. This method relies on fluorescent conjugated polymer nanoparticles that can be used to identify microplastics after minimal preparation. In all examined samples, originating from diverse sources and environments, microplastics were consistently present in the form of fragments and/or fibers, with polyethylene terephthalate (PET) emerging as the most abundant type, as confirmed via Raman spectroscopy either before or after labeling. This approach significantly streamlines the microplastic identification process, reducing the time needed for extraction and isolation. Our findings corroborate the efficacy of nanoparticle labeling for microplastic detection, offering promising avenues for their facile, specific, and reliable identification. Ultimately, this novel procedure holds potential to enhance remediation efforts targeting microplastics in the environment, thereby advancing our understanding of their global impact.

Abstract Image

用共轭聚合物纳米颗粒快速检测各种环境样品中的微塑料
微塑料污染构成了一个紧迫的全球环境问题,几乎影响到人类活动的方方面面。这一具体的环境挑战对健康、社会动态和工业实践产生了深刻但仍知之甚少的影响。进一步研究和减少微塑料的一个主要障碍是它们的尺寸和组成的不均匀性。此外,造成微塑料排放的众多来源进一步使他们的研究复杂化。为了加强目前对微塑料的检测和分析方法,本研究利用了一种新的方法,可以在加拿大不同地理位置收集的不同环境样本(包括空气、土壤、湖水、雨、雪和海洋沉积物)中简单而具体地识别微塑料。该方法依赖于荧光共轭聚合物纳米颗粒,可用于识别微塑料后,最少的准备。在所有被检查的样品中,来自不同来源和环境的微塑料始终以碎片和/或纤维的形式存在,聚对苯二甲酸乙二醇酯(PET)是最丰富的类型,在标记之前或之后通过拉曼光谱证实。这种方法大大简化了微塑料鉴定过程,减少了提取和分离所需的时间。我们的研究结果证实了纳米颗粒标记对微塑料检测的有效性,为其简便、特异和可靠的鉴定提供了有希望的途径。最终,这种新方法有可能加强针对环境中微塑料的修复工作,从而促进我们对其全球影响的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信