Innovative approaches to sustainable wastewater treatment: a comprehensive exploration of conventional and emerging technologies

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL
Jaweria Shamshad and Rashid Ur Rehman
{"title":"Innovative approaches to sustainable wastewater treatment: a comprehensive exploration of conventional and emerging technologies","authors":"Jaweria Shamshad and Rashid Ur Rehman","doi":"10.1039/D4VA00136B","DOIUrl":null,"url":null,"abstract":"<p >Access to clean water is under threat due to population growth, climate change, and pollution, emphasizing the need for effective wastewater treatment. Wastewater pollutants pose risks to public health and ecosystems, necessitating proper treatment methods. This paper outlines both conventional and emerging technologies for wastewater treatment. Established techniques, such as activated sludge processing, chlorination, and constructed wetlands, are discussed alongside newer methods, such as advanced oxidation, ultraviolet disinfection, membrane bioreactors, reverse osmosis, artificial intelligence optimization, and nanofiltration, which enhance contaminant removal but may incur high costs and energy demands. Integration of renewable energy sources, such as solar, wind, and biomass, into treatment facilities improves efficiency and reduces emissions. The process efficiency can be possibly enhanced through real-time monitoring and automation, while a sustainable and resource-efficient method involves integrating bio-electrochemical systems with constructed wetlands. There are still challenges in sludge handling, land requirements, and long-term system maintenance. Balancing technological solutions, environmental protection, and economic feasibility is essential for sustainable wastewater management, which can ensure continuous access to clean water in the face of increasing demand for this vital resource.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 2","pages":" 189-222"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00136b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/va/d4va00136b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Access to clean water is under threat due to population growth, climate change, and pollution, emphasizing the need for effective wastewater treatment. Wastewater pollutants pose risks to public health and ecosystems, necessitating proper treatment methods. This paper outlines both conventional and emerging technologies for wastewater treatment. Established techniques, such as activated sludge processing, chlorination, and constructed wetlands, are discussed alongside newer methods, such as advanced oxidation, ultraviolet disinfection, membrane bioreactors, reverse osmosis, artificial intelligence optimization, and nanofiltration, which enhance contaminant removal but may incur high costs and energy demands. Integration of renewable energy sources, such as solar, wind, and biomass, into treatment facilities improves efficiency and reduces emissions. The process efficiency can be possibly enhanced through real-time monitoring and automation, while a sustainable and resource-efficient method involves integrating bio-electrochemical systems with constructed wetlands. There are still challenges in sludge handling, land requirements, and long-term system maintenance. Balancing technological solutions, environmental protection, and economic feasibility is essential for sustainable wastewater management, which can ensure continuous access to clean water in the face of increasing demand for this vital resource.

Abstract Image

可持续废水处理的创新方法:对传统和新兴技术的全面探索
由于人口增长、气候变化和污染,清洁水的获取受到威胁,因此需要有效的废水处理。废水污染物对公众健康和生态系统构成风险,需要采取适当的处理方法。本文概述了污水处理的传统技术和新兴技术。已建立的技术,如活性污泥处理、氯化和人工湿地,与较新的方法,如高级氧化、紫外线消毒、膜生物反应器、反渗透、人工智能优化和纳滤一起讨论,这些方法可以增强污染物的去除,但可能会产生高成本和能源需求。将太阳能、风能和生物质能等可再生能源整合到处理设施中,可以提高效率并减少排放。通过实时监测和自动化可以提高过程效率,而将生物电化学系统与人工湿地相结合是一种可持续和资源高效的方法。在污泥处理、土地需求和长期系统维护方面仍然存在挑战。平衡技术解决方案、环境保护和经济可行性对于可持续的废水管理至关重要,这可以确保在面对这一重要资源日益增长的需求时持续获得清洁的水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信