Assessing the environmental impact of freshwater use in LCA: established practices and current methods

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Basit A. Mir, Anissa Nurdiawati and Sami G. Al-Ghamdi
{"title":"Assessing the environmental impact of freshwater use in LCA: established practices and current methods","authors":"Basit A. Mir, Anissa Nurdiawati and Sami G. Al-Ghamdi","doi":"10.1039/D4EW00641K","DOIUrl":null,"url":null,"abstract":"<p >Freshwater, an essential resource for survival, is becoming scarce because of overuse. A reliable and precise assessment approach is necessary to establish a sustainable water system for use in proper decision-making. This paper explores the range of approaches and methods developed over time to evaluate water consumption, considering factors related to scarcity, quality, and volume. These methods are primarily based on volumetric footprint, impact-oriented assessment, or a combination of both. The water footprinting standard defines water footprint as impact-oriented, where volumetric approach serves as an inventory in life cycle assessment (LCA), which is a widely used tool for evaluating the environmental impact of a product or a system throughout its lifetime. The work provides a thorough overview of more than forty different approaches, tools, databases, and water indices related to water use, water footprint and its environmental impact using life cycle assessment tool and compiled from more than sixty reviewed articles. Many approaches focus on availability and shortage while water quality is generally considered separately, with LCA employing specific indicators. To calculate the impact of scarce freshwater supply on the environment, methodologies are being developed to create a connection between water availability, use and impacts. This is accomplished by employing various characterization models that use environmental mechanisms to convert volumetric input flows into impacts. Some models use cause-and-effect chain relationships to evaluate the effects of water scarcity on ecosystems, human health, and natural resources. Water indices, usually focusing on scarcity or quantity, are used as characterization factors in some models. The paper also presents the most recent approaches to water use assessment that emerged from a consensus between the LCA and water scientific groups. Despite substantial progress, challenges are still present within the sector. Continuous improvement is essential for improving current methods. Enhancing environmental mechanisms, measuring uncertainty, resolving temporal and spatial disparities, undertaking regional evaluations, and improving primary or local data are some of the challenges. This study directs future research toward more efficient and comprehensive water use impact assessment techniques by outlining important areas for improvement.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 2","pages":" 196-221"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ew/d4ew00641k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00641k","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Freshwater, an essential resource for survival, is becoming scarce because of overuse. A reliable and precise assessment approach is necessary to establish a sustainable water system for use in proper decision-making. This paper explores the range of approaches and methods developed over time to evaluate water consumption, considering factors related to scarcity, quality, and volume. These methods are primarily based on volumetric footprint, impact-oriented assessment, or a combination of both. The water footprinting standard defines water footprint as impact-oriented, where volumetric approach serves as an inventory in life cycle assessment (LCA), which is a widely used tool for evaluating the environmental impact of a product or a system throughout its lifetime. The work provides a thorough overview of more than forty different approaches, tools, databases, and water indices related to water use, water footprint and its environmental impact using life cycle assessment tool and compiled from more than sixty reviewed articles. Many approaches focus on availability and shortage while water quality is generally considered separately, with LCA employing specific indicators. To calculate the impact of scarce freshwater supply on the environment, methodologies are being developed to create a connection between water availability, use and impacts. This is accomplished by employing various characterization models that use environmental mechanisms to convert volumetric input flows into impacts. Some models use cause-and-effect chain relationships to evaluate the effects of water scarcity on ecosystems, human health, and natural resources. Water indices, usually focusing on scarcity or quantity, are used as characterization factors in some models. The paper also presents the most recent approaches to water use assessment that emerged from a consensus between the LCA and water scientific groups. Despite substantial progress, challenges are still present within the sector. Continuous improvement is essential for improving current methods. Enhancing environmental mechanisms, measuring uncertainty, resolving temporal and spatial disparities, undertaking regional evaluations, and improving primary or local data are some of the challenges. This study directs future research toward more efficient and comprehensive water use impact assessment techniques by outlining important areas for improvement.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信