Vicente Contreras, Vander Georgeff, Gabriela Iglesias-Mendoza, Tara Nicklay, Matthew Rutherford, Nancy Lorenzon, Keith Miller, Sarah Watamura, Corinne Lengsfeld and Phillip Danielson
{"title":"Integrating wastewater analysis and targeted clinical testing for early disease outbreak detection and an enhanced public health response","authors":"Vicente Contreras, Vander Georgeff, Gabriela Iglesias-Mendoza, Tara Nicklay, Matthew Rutherford, Nancy Lorenzon, Keith Miller, Sarah Watamura, Corinne Lengsfeld and Phillip Danielson","doi":"10.1039/D4EW00654B","DOIUrl":null,"url":null,"abstract":"<p >The COVID-19 pandemic provided an unprecedented opportunity to assess the value of wastewater based epidemiology (WBE) as a tool to complement clinical testing in efforts to monitor and mitigate disease outbreaks. This study presents a retrospective assessment of a WBE approach that integrated WBE from congregate living facilities with high-frequency, rapid-turnaround clinical testing within a university setting. By focusing on communal living spaces, such as dormitories, this approach made it possible to rapidly identify and counter the spread of SARS-CoV-2 as well as to monitor the efficacy of campus-focused public health measures throughout the pandemic. Beginning in 2020, the University of Denver (DU) implemented a campus-wide, dual-prong COVID-19 response that combined WBE with frequent high-sensitivity testing (FHST) of individuals by RT-qPCR. Wastewater monitoring at the building level was employed in an effort to facilitate the early detection of SARS-CoV-2 spread and thereby make it possible to more confidently and precisely allocate limited clinical testing resources to identify and isolate infected individuals. This data-driven approach to WBE-informed targeting of FHST resources contributed to markedly and consistently lower SARS-CoV-2 positivity rates on campus compared to the surrounding metropolitan area. Analyses of data from multiple dormitories, and spanning several early-stage disease outbreaks, have highlighted the potential of WBE to optimize limited clinical resources for detecting, containing, and resolving the spread of communicable diseases. The information gained from DU's COVID-19 response can help to guide the development of future public health strategies in other communities confronting similar challenges.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 2","pages":" 317-327"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00654b","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic provided an unprecedented opportunity to assess the value of wastewater based epidemiology (WBE) as a tool to complement clinical testing in efforts to monitor and mitigate disease outbreaks. This study presents a retrospective assessment of a WBE approach that integrated WBE from congregate living facilities with high-frequency, rapid-turnaround clinical testing within a university setting. By focusing on communal living spaces, such as dormitories, this approach made it possible to rapidly identify and counter the spread of SARS-CoV-2 as well as to monitor the efficacy of campus-focused public health measures throughout the pandemic. Beginning in 2020, the University of Denver (DU) implemented a campus-wide, dual-prong COVID-19 response that combined WBE with frequent high-sensitivity testing (FHST) of individuals by RT-qPCR. Wastewater monitoring at the building level was employed in an effort to facilitate the early detection of SARS-CoV-2 spread and thereby make it possible to more confidently and precisely allocate limited clinical testing resources to identify and isolate infected individuals. This data-driven approach to WBE-informed targeting of FHST resources contributed to markedly and consistently lower SARS-CoV-2 positivity rates on campus compared to the surrounding metropolitan area. Analyses of data from multiple dormitories, and spanning several early-stage disease outbreaks, have highlighted the potential of WBE to optimize limited clinical resources for detecting, containing, and resolving the spread of communicable diseases. The information gained from DU's COVID-19 response can help to guide the development of future public health strategies in other communities confronting similar challenges.
期刊介绍:
Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.