Revolutionary dual nanofiller embedded nanofiltration membranes: fabricated CQDs and PMO-PPD modified membranes for experimental design optimization of simultaneous removal of Pb(ii), MO, and NaCl from wastewater†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Farzad Mehrjo and Afsaneh Shahbazi
{"title":"Revolutionary dual nanofiller embedded nanofiltration membranes: fabricated CQDs and PMO-PPD modified membranes for experimental design optimization of simultaneous removal of Pb(ii), MO, and NaCl from wastewater†","authors":"Farzad Mehrjo and Afsaneh Shahbazi","doi":"10.1039/D4EW00871E","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a revolutionary nanofiltration membrane capable of significantly enhancing the removal of Pb(<small>II</small>), MO, and NaCl from industrial wastewater. The performance of polyethersulfone (PES) membranes was enhanced by incorporating PMO-PPD and CQD nanomaterials. The composite membranes demonstrated improved hydrophilic properties, reduced fouling, enhanced antibacterial activity, and increased pollutant removal capabilities. Characterization techniques confirmed the successful synthesis and integration of the nanomaterials into the membrane matrix. The inclusion of PMO-PPD/CQDs significantly improved pure water flux and fouling resistance compared to pristine PES membranes. The M3 membrane, containing 0.1 wt% PMO-PPD and 0.4 wt% CQDs nanofiller, exhibited the highest performance in terms of water flux (81.3 L m<small><sup>−2</sup></small> h<small><sup>−1</sup></small>), bovine serum albumin rejection (29.5 L m<small><sup>−2</sup></small> h<small><sup>−1</sup></small>), foul resistance ratio (63.7%), total resistance (58%), reversible resistance (21.6%), and irreversible resistance (36.3%). Among fabricated membranes, M3 demonstrated the highest pollutant removal rates, reaching 89.76%, 93.7%, and 36.77% for Pb(<small>II</small>) (initial concentration of 30 mg L<small><sup>−1</sup></small>), methyl orange (MO) (initial concentration of 40 mg L<small><sup>−1</sup></small>), and NaCl (initial concentration of 200 mg L<small><sup>−1</sup></small>), respectively. Response surface methodology was employed to optimize the simultaneous removal of these pollutants. Additionally, the incorporation of CQDs enhanced the antibacterial properties of the membranes against <em>E. coli</em> (17.99%) and <em>S. aureus</em> (22.70%). It was found that the simultaneous application of two nanofillers significantly enhanced the efficiency and features of the nanofiltration membrane.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 2","pages":" 435-448"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00871e","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a revolutionary nanofiltration membrane capable of significantly enhancing the removal of Pb(II), MO, and NaCl from industrial wastewater. The performance of polyethersulfone (PES) membranes was enhanced by incorporating PMO-PPD and CQD nanomaterials. The composite membranes demonstrated improved hydrophilic properties, reduced fouling, enhanced antibacterial activity, and increased pollutant removal capabilities. Characterization techniques confirmed the successful synthesis and integration of the nanomaterials into the membrane matrix. The inclusion of PMO-PPD/CQDs significantly improved pure water flux and fouling resistance compared to pristine PES membranes. The M3 membrane, containing 0.1 wt% PMO-PPD and 0.4 wt% CQDs nanofiller, exhibited the highest performance in terms of water flux (81.3 L m−2 h−1), bovine serum albumin rejection (29.5 L m−2 h−1), foul resistance ratio (63.7%), total resistance (58%), reversible resistance (21.6%), and irreversible resistance (36.3%). Among fabricated membranes, M3 demonstrated the highest pollutant removal rates, reaching 89.76%, 93.7%, and 36.77% for Pb(II) (initial concentration of 30 mg L−1), methyl orange (MO) (initial concentration of 40 mg L−1), and NaCl (initial concentration of 200 mg L−1), respectively. Response surface methodology was employed to optimize the simultaneous removal of these pollutants. Additionally, the incorporation of CQDs enhanced the antibacterial properties of the membranes against E. coli (17.99%) and S. aureus (22.70%). It was found that the simultaneous application of two nanofillers significantly enhanced the efficiency and features of the nanofiltration membrane.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信