Polyamide reverse osmosis membranes modified with graphene oxide for enhanced chlorine attack and fouling resistance

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Ana Luiza S. Assis, Vinicius G. de Castro, Yara L. Brasil, Cláudia K. B. de Vasconcelos, Marcelo M. Viana, Caique P. M. de Oliveira, Glaura G. Silva, Mariana G. Brondi, Miriam Cristina S. Amaral and Eduardo H. M. Nunes
{"title":"Polyamide reverse osmosis membranes modified with graphene oxide for enhanced chlorine attack and fouling resistance","authors":"Ana Luiza S. Assis, Vinicius G. de Castro, Yara L. Brasil, Cláudia K. B. de Vasconcelos, Marcelo M. Viana, Caique P. M. de Oliveira, Glaura G. Silva, Mariana G. Brondi, Miriam Cristina S. Amaral and Eduardo H. M. Nunes","doi":"10.1039/D4EW00727A","DOIUrl":null,"url":null,"abstract":"<p >Reverse osmosis (RO) systems are an essential tool for water desalination, but their effectiveness can be hampered by membrane fouling and susceptibility to chemical degradation from free chlorine. Polyamide (PA) membranes, a staple in RO systems, are particularly susceptible to such challenges. In this study, we set out to improve the resistance of PA membranes to chlorine attack and fouling by exploring surface modification with graphene oxide (GO). A variety of deposition techniques have been investigated, including dip coating, spin coating, drop casting, and vacuum filtration. Spin coating with a GO concentration of 1 g L<small><sup>−1</sup></small> in a 70% ethanol–water solvent was found to be the optimal method. This modification, while maintaining a high salt rejection rate (about 97%), resulted in a 16% increase in water permeability (from 3.1 to 3.6 L hm<small><sup>−2</sup></small> bar<small><sup>−1</sup></small>) compared to the pristine membrane. In long-term tests using 100 ppm sodium hypochlorite for 21 days, the GO-coated membranes showed only a 69% increase in hydraulic permeability and a 13% decrease in salt rejection. In contrast, the reference membrane experienced a 245% increase in permeability and a 23% decrease in rejection. These improvements hold great promise for reducing energy consumption, minimizing maintenance downtime, and extending the membrane lifespan.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 2","pages":" 405-421"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00727a","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse osmosis (RO) systems are an essential tool for water desalination, but their effectiveness can be hampered by membrane fouling and susceptibility to chemical degradation from free chlorine. Polyamide (PA) membranes, a staple in RO systems, are particularly susceptible to such challenges. In this study, we set out to improve the resistance of PA membranes to chlorine attack and fouling by exploring surface modification with graphene oxide (GO). A variety of deposition techniques have been investigated, including dip coating, spin coating, drop casting, and vacuum filtration. Spin coating with a GO concentration of 1 g L−1 in a 70% ethanol–water solvent was found to be the optimal method. This modification, while maintaining a high salt rejection rate (about 97%), resulted in a 16% increase in water permeability (from 3.1 to 3.6 L hm−2 bar−1) compared to the pristine membrane. In long-term tests using 100 ppm sodium hypochlorite for 21 days, the GO-coated membranes showed only a 69% increase in hydraulic permeability and a 13% decrease in salt rejection. In contrast, the reference membrane experienced a 245% increase in permeability and a 23% decrease in rejection. These improvements hold great promise for reducing energy consumption, minimizing maintenance downtime, and extending the membrane lifespan.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信