{"title":"A Novel Inline Near-Zero Thermopile RF MEMS Power Sensor","authors":"Zhiqiang Zhang;Runqi Gu;Zijie Yuan;Yuhao Xie;Tao Jiang;Feilong Lei;Chengxi Sun;Jianqiu Huang","doi":"10.1109/JMEMS.2024.3501477","DOIUrl":null,"url":null,"abstract":"This paper presents a novel single-chip integrated inline thermoelectric MEMS sensor for measuring the forward and reverse RF power. The sensor operates on the principle of RF power-heat-electricity. It utilizes all-passive structures for near-zero power consumption, with a wide bandwidth (22-30 GHz), high power detection capability (600 mW) and small chip size (<inline-formula> <tex-math>$1640\\times 910~\\mu $ </tex-math></inline-formula>m2). A MEMS coupling structure with suspended beams is designed to be broadband and miniaturized, while two MEMS sensing structures with optimized thermopiles are designed for high sensitivity and high power detection. This MEMS sensor is fabricated using the GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show a reflection loss of less than −10.40 dB, and an insertion loss of better than −1.55 dB. Linearity of 98.8% is obtained. At 26, 27 and 28 GHz, measured sensitivities are about 4.10, 4.57 and 4.61 <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>V/mW for the forward detection, and 0.32, 0.83 and 1.10 <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>V/mW for the reverse detection, respectively. The ratios of these sensitivities produce a maximum at the center frequency of interest. [2024-0095]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"59-64"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10771595/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel single-chip integrated inline thermoelectric MEMS sensor for measuring the forward and reverse RF power. The sensor operates on the principle of RF power-heat-electricity. It utilizes all-passive structures for near-zero power consumption, with a wide bandwidth (22-30 GHz), high power detection capability (600 mW) and small chip size ($1640\times 910~\mu $ m2). A MEMS coupling structure with suspended beams is designed to be broadband and miniaturized, while two MEMS sensing structures with optimized thermopiles are designed for high sensitivity and high power detection. This MEMS sensor is fabricated using the GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show a reflection loss of less than −10.40 dB, and an insertion loss of better than −1.55 dB. Linearity of 98.8% is obtained. At 26, 27 and 28 GHz, measured sensitivities are about 4.10, 4.57 and 4.61 $\mu $ V/mW for the forward detection, and 0.32, 0.83 and 1.10 $\mu $ V/mW for the reverse detection, respectively. The ratios of these sensitivities produce a maximum at the center frequency of interest. [2024-0095]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.