{"title":"Disposable Piezoresistive MEMS Airflow Sensor for Chronic Respiratory Disease Detection","authors":"Beril Aygül;Sena Ulgaz;Berkay Yılmaz;Ömer Gökalp Akcan;Kuter Erdil;Yiğit Dağhan Gökdel","doi":"10.1109/JMEMS.2024.3484226","DOIUrl":null,"url":null,"abstract":"This paper details the design, fabrication, and characterization of a novel disposable MEMS airflow sensor, employing Bare Conductive electric paint deposited on Whatman 3MM chromatography paper through silk screen printing. The sensor achieves rapid fabrication within 30 minutes. It demonstrates a sensitivity of 1.8 kPa−1, a resolution of 27.6 kPa, and a limit of detection (LoD) of 48.94 kPa, with an operational pressure range from 27.6 to 137.9 kPa. An electronic readout circuit transduces electrical resistance variations into voltage signals, which are monitored via a digital multimeter and analyzed on a PC. The sensor’s disposable nature mitigates nosocomial infection risks and enhances hygiene, making it ideal for monitoring respiratory conditions such as asthma and COPD. With a material cost of under <inline-formula> <tex-math>${\\$}0.1$ </tex-math></inline-formula>, the sensor is highly suitable for scalable, cost-sensitive biomedical applications. Experimental validation confirms the reliability and precision of this proof-of-concept device in airflow measurement. [2024-0148]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"100-107"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10740265/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper details the design, fabrication, and characterization of a novel disposable MEMS airflow sensor, employing Bare Conductive electric paint deposited on Whatman 3MM chromatography paper through silk screen printing. The sensor achieves rapid fabrication within 30 minutes. It demonstrates a sensitivity of 1.8 kPa−1, a resolution of 27.6 kPa, and a limit of detection (LoD) of 48.94 kPa, with an operational pressure range from 27.6 to 137.9 kPa. An electronic readout circuit transduces electrical resistance variations into voltage signals, which are monitored via a digital multimeter and analyzed on a PC. The sensor’s disposable nature mitigates nosocomial infection risks and enhances hygiene, making it ideal for monitoring respiratory conditions such as asthma and COPD. With a material cost of under ${\$}0.1$ , the sensor is highly suitable for scalable, cost-sensitive biomedical applications. Experimental validation confirms the reliability and precision of this proof-of-concept device in airflow measurement. [2024-0148]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.