Effects of Nb Content on the Microstructure and Magnetic Properties of the Sm₁.₂Zr₀.₂(Fe₀.₈Co₀.₂)₁₁.₅-ₓ Ti₀.₅Nbₓ (x=0 –0.4, at.%) Alloys

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuainan Xu;Jinbo Wei;Chengli Li;Yan Wang;Zhen Shi;Xiaolian Liu;Yuan Hong;Anjian Pan;Yancheng Kong;Lizhong Zhao;Xuefeng Zhang
{"title":"Effects of Nb Content on the Microstructure and Magnetic Properties of the Sm₁.₂Zr₀.₂(Fe₀.₈Co₀.₂)₁₁.₅-ₓ Ti₀.₅Nbₓ (x=0 –0.4, at.%) Alloys","authors":"Shuainan Xu;Jinbo Wei;Chengli Li;Yan Wang;Zhen Shi;Xiaolian Liu;Yuan Hong;Anjian Pan;Yancheng Kong;Lizhong Zhao;Xuefeng Zhang","doi":"10.1109/TMAG.2024.3520698","DOIUrl":null,"url":null,"abstract":"ThMn12-type SmFe12-based magnet is suggested to be a promising permanent magnet because of its intrinsic magnetic properties and thermal stability. However, their potential applications are currently limited, as the existence of a soft magnetic <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-Fe phase in the alloy deteriorates the hard magnetic properties. Hence, in this work, Nb element was introduced into the SmFe12 alloy to inhibit the precipitation of <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-(Fe, Co) phase, and the effects of Nb addition on the microstructure and magnetic properties of melt-spun, hot-pressed (HP), and hot-deformed (HD) Sm1.2Zr0.2(Fe0.8Co0.2)11.5-x Ti0.5Nbx (<inline-formula> <tex-math>${x} =0$ </tex-math></inline-formula>–0.4, at.%) alloys were systematically investigated. Experimental results indicate that the additional Nb element could increase the glass-forming ability and thus inhibit the formation of the <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-(Fe, Co) phase in the melt-spun ribbon. However, a zero-field shoulder appears in the demagnetization curves of the heat-treated ribbons due to the appearance of <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-(Fe, Co) phase, which could be suppressed by the HP process. As a result, the coercivity of Nb =0.2 HP magnet reaches 3.8 kOe, and the magnetic energy product (BH)max reaches 58.40 kJ/m3. Furthermore, a weak (001) texture of the 1:12 phase is obtained for the one-step HD magnet from the amorphous ribbons, which results in a remanence <inline-formula> <tex-math>${J} _{\\text {r}}$ </tex-math></inline-formula> of 0.11 T higher in the direction parallel to the c-axis compared to the direction perpendicular to the c-axis. The present result suggests a route to fabricate high-performance bulk SmFe12-based permanent magnets.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-6"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10810464/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

ThMn12-type SmFe12-based magnet is suggested to be a promising permanent magnet because of its intrinsic magnetic properties and thermal stability. However, their potential applications are currently limited, as the existence of a soft magnetic $\alpha $ -Fe phase in the alloy deteriorates the hard magnetic properties. Hence, in this work, Nb element was introduced into the SmFe12 alloy to inhibit the precipitation of $\alpha $ -(Fe, Co) phase, and the effects of Nb addition on the microstructure and magnetic properties of melt-spun, hot-pressed (HP), and hot-deformed (HD) Sm1.2Zr0.2(Fe0.8Co0.2)11.5-x Ti0.5Nbx ( ${x} =0$ –0.4, at.%) alloys were systematically investigated. Experimental results indicate that the additional Nb element could increase the glass-forming ability and thus inhibit the formation of the $\alpha $ -(Fe, Co) phase in the melt-spun ribbon. However, a zero-field shoulder appears in the demagnetization curves of the heat-treated ribbons due to the appearance of $\alpha $ -(Fe, Co) phase, which could be suppressed by the HP process. As a result, the coercivity of Nb =0.2 HP magnet reaches 3.8 kOe, and the magnetic energy product (BH)max reaches 58.40 kJ/m3. Furthermore, a weak (001) texture of the 1:12 phase is obtained for the one-step HD magnet from the amorphous ribbons, which results in a remanence ${J} _{\text {r}}$ of 0.11 T higher in the direction parallel to the c-axis compared to the direction perpendicular to the c-axis. The present result suggests a route to fabricate high-performance bulk SmFe12-based permanent magnets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信