Dual-Polarized Wideband Filtering Antenna Array Based on Stacked-PCB Structure

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Matti Kuosmanen;Sten E. Gunnarsson;Johan Malmström;Juha Ala-Laurinaho;Jari Holopainen;Ville Viikari
{"title":"Dual-Polarized Wideband Filtering Antenna Array Based on Stacked-PCB Structure","authors":"Matti Kuosmanen;Sten E. Gunnarsson;Johan Malmström;Juha Ala-Laurinaho;Jari Holopainen;Ville Viikari","doi":"10.1109/OJAP.2024.3466234","DOIUrl":null,"url":null,"abstract":"This paper investigates a thin low-pass filtering antenna array based on dual-polarized Vivaldi elements. The low-pass filtering in the antenna elements reduces the requirement for the front-end filtering between the antenna and the microwave electronics, resulting in improved overall out-of-band suppression, size reduction, and lower cost. The array employs a novel stacked-PCB structure, where simple two-sided PCBs are stacked on top of each other. The via-connected metal layers of all PCBs form a tapered slotline along the surface normal of the PCBs. The filtering effect is realized by corrugating the tapered slotlines, which provides effective, space-saving integration of the filters that fit into a half-wavelength lattice. According to unit-cell simulations, the proposed antenna array operates at 6–18.5 GHz, and the stopband extends from 21 GHz to 37 GHz. The antenna array provides a −10-dB active reflection coefficient (ARC) with beam-steering angles within ±60° in E- and D-planes, and −6 dB within ±55° in the H-plane. At stopband frequencies, the attenuation with respect to simulated total efficiency is at least 20 dB. The operation of the proposed antenna array is confirmed by measurements of an <inline-formula> <tex-math>$11\\times 12$ </tex-math></inline-formula> antenna array prototype, which show that the gain suppression level in the stopband is more than 30 dB up to 37 GHz, and more than 20 dB up to 40 GHz.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"38-50"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689344","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10689344/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a thin low-pass filtering antenna array based on dual-polarized Vivaldi elements. The low-pass filtering in the antenna elements reduces the requirement for the front-end filtering between the antenna and the microwave electronics, resulting in improved overall out-of-band suppression, size reduction, and lower cost. The array employs a novel stacked-PCB structure, where simple two-sided PCBs are stacked on top of each other. The via-connected metal layers of all PCBs form a tapered slotline along the surface normal of the PCBs. The filtering effect is realized by corrugating the tapered slotlines, which provides effective, space-saving integration of the filters that fit into a half-wavelength lattice. According to unit-cell simulations, the proposed antenna array operates at 6–18.5 GHz, and the stopband extends from 21 GHz to 37 GHz. The antenna array provides a −10-dB active reflection coefficient (ARC) with beam-steering angles within ±60° in E- and D-planes, and −6 dB within ±55° in the H-plane. At stopband frequencies, the attenuation with respect to simulated total efficiency is at least 20 dB. The operation of the proposed antenna array is confirmed by measurements of an $11\times 12$ antenna array prototype, which show that the gain suppression level in the stopband is more than 30 dB up to 37 GHz, and more than 20 dB up to 40 GHz.
基于堆叠pcb结构的双极化宽带滤波天线阵列
本文研究了一种基于双极化维瓦尔第元的薄低通滤波天线阵列。天线元件中的低通滤波降低了对天线和微波电子器件之间的前端滤波的要求,从而提高了整体带外抑制,减小了尺寸,降低了成本。该阵列采用了一种新颖的堆叠pcb结构,其中简单的双面pcb堆叠在彼此的顶部。所有pcb的通孔连接金属层沿着pcb的表面法线形成一个锥形槽线。滤波效果是通过将锥形槽线波纹化来实现的,这提供了有效的、节省空间的集成滤波器,适合半波长晶格。单元仿真结果表明,该天线阵工作频率为6 ~ 18.5 GHz,阻带范围为21 ~ 37 GHz。当E面和d面波束转向角在±60°范围内时,天线阵列的主动反射系数(ARC)为- 10db, h面波束转向角在±55°范围内为- 6db。在阻带频率下,相对于模拟总效率的衰减至少为20db。通过对$11\ × 12$天线阵样机的测量,验证了该天线阵的有效性,结果表明,阻带增益抑制水平在37ghz范围内大于30db,在40ghz范围内大于20db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信