{"title":"Information Rates Over Multi-View Channels","authors":"V. Arvind Rameshwar;Nir Weinberger","doi":"10.1109/TIT.2024.3518760","DOIUrl":null,"url":null,"abstract":"We investigate the fundamental limits of reliable communication over multi-view channels, in which the channel output is comprised of a large number of independent noisy views of a transmitted symbol. We consider first the setting of multi-view discrete memoryless channels and then extend our results to general multi-view channels (using multi-letter formulas). We argue that the channel capacity and dispersion of such multi-view channels converge exponentially fast in the number of views to the entropy and varentropy of the input distribution, respectively. We identify the exact rate of convergence as the smallest Chernoff information between two conditional distributions of the output, conditioned on unequal inputs. For the special case of the deletion channel, we compute upper bounds on this Chernoff information. Finally, we present a new channel model we term the Poisson approximation channel — of possible independent interest — whose capacity closely approximates the capacity of the multi-view binary symmetric channel for any fixed number of views.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 2","pages":"847-861"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10804170/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the fundamental limits of reliable communication over multi-view channels, in which the channel output is comprised of a large number of independent noisy views of a transmitted symbol. We consider first the setting of multi-view discrete memoryless channels and then extend our results to general multi-view channels (using multi-letter formulas). We argue that the channel capacity and dispersion of such multi-view channels converge exponentially fast in the number of views to the entropy and varentropy of the input distribution, respectively. We identify the exact rate of convergence as the smallest Chernoff information between two conditional distributions of the output, conditioned on unequal inputs. For the special case of the deletion channel, we compute upper bounds on this Chernoff information. Finally, we present a new channel model we term the Poisson approximation channel — of possible independent interest — whose capacity closely approximates the capacity of the multi-view binary symmetric channel for any fixed number of views.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.