Designed Dithering Sign Activation for Binary Neural Networks

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Brayan Monroy;Juan Estupiñan;Tatiana Gelvez-Barrera;Jorge Bacca;Henry Arguello
{"title":"Designed Dithering Sign Activation for Binary Neural Networks","authors":"Brayan Monroy;Juan Estupiñan;Tatiana Gelvez-Barrera;Jorge Bacca;Henry Arguello","doi":"10.1109/JSTSP.2024.3467926","DOIUrl":null,"url":null,"abstract":"Binary Neural Networks emerged as a cost-effective and energy-efficient solution for computer vision tasks by binarizing either network weights or activations. However, common binary activations, such as the Sign activation function, abruptly binarize the values with a single threshold, losing fine-grained details in the feature outputs. This work proposes an activation that applies multiple thresholds following dithering principles, shifting the Sign activation function for each pixel according to a spatially periodic threshold kernel. Unlike literature methods, the shifting is defined jointly for a set of adjacent pixels, taking advantage of spatial correlations. Experiments over the classification task using both grayscale and RGB datasets demonstrate the effectiveness of the designed dithering Sign activation function as an alternative activation for binary neural networks, without increasing the computational cost. Further, DeSign balances the preservation of details with the efficiency of binary operations.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 6","pages":"1100-1107"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10693367/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Binary Neural Networks emerged as a cost-effective and energy-efficient solution for computer vision tasks by binarizing either network weights or activations. However, common binary activations, such as the Sign activation function, abruptly binarize the values with a single threshold, losing fine-grained details in the feature outputs. This work proposes an activation that applies multiple thresholds following dithering principles, shifting the Sign activation function for each pixel according to a spatially periodic threshold kernel. Unlike literature methods, the shifting is defined jointly for a set of adjacent pixels, taking advantage of spatial correlations. Experiments over the classification task using both grayscale and RGB datasets demonstrate the effectiveness of the designed dithering Sign activation function as an alternative activation for binary neural networks, without increasing the computational cost. Further, DeSign balances the preservation of details with the efficiency of binary operations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信