{"title":"Designed Dithering Sign Activation for Binary Neural Networks","authors":"Brayan Monroy;Juan Estupiñan;Tatiana Gelvez-Barrera;Jorge Bacca;Henry Arguello","doi":"10.1109/JSTSP.2024.3467926","DOIUrl":null,"url":null,"abstract":"Binary Neural Networks emerged as a cost-effective and energy-efficient solution for computer vision tasks by binarizing either network weights or activations. However, common binary activations, such as the Sign activation function, abruptly binarize the values with a single threshold, losing fine-grained details in the feature outputs. This work proposes an activation that applies multiple thresholds following dithering principles, shifting the Sign activation function for each pixel according to a spatially periodic threshold kernel. Unlike literature methods, the shifting is defined jointly for a set of adjacent pixels, taking advantage of spatial correlations. Experiments over the classification task using both grayscale and RGB datasets demonstrate the effectiveness of the designed dithering Sign activation function as an alternative activation for binary neural networks, without increasing the computational cost. Further, DeSign balances the preservation of details with the efficiency of binary operations.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 6","pages":"1100-1107"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10693367/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Binary Neural Networks emerged as a cost-effective and energy-efficient solution for computer vision tasks by binarizing either network weights or activations. However, common binary activations, such as the Sign activation function, abruptly binarize the values with a single threshold, losing fine-grained details in the feature outputs. This work proposes an activation that applies multiple thresholds following dithering principles, shifting the Sign activation function for each pixel according to a spatially periodic threshold kernel. Unlike literature methods, the shifting is defined jointly for a set of adjacent pixels, taking advantage of spatial correlations. Experiments over the classification task using both grayscale and RGB datasets demonstrate the effectiveness of the designed dithering Sign activation function as an alternative activation for binary neural networks, without increasing the computational cost. Further, DeSign balances the preservation of details with the efficiency of binary operations.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.